RETHINKING TRAINING OBJECTIVE FOR SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION: SEMANTIC CUES TO RESCUE

被引:0
|
作者
Li, Keyao [1 ]
Li, Ge [1 ]
Li, Thomas [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Shenzhen, Peoples R China
[2] Peking Univ, Adv Inst Informat Technol, Hangzhou, Peoples R China
关键词
self-supervised learning; monocular depth estimation; semantic cues;
D O I
10.1109/ICIP42928.2021.9506744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation finds a wide range of applications in modeling 3D scenes. Since it is expensive to collect ground truth labels to supervise training, plenty of works have been done in a self-supervised manner. A common practice is to train the network optimizing a photometric objective (i.e., view synthesis) due to its effectiveness. However, this training objective is sensitive to optical changes and lacks a consideration of object-level cues, which leads to sub-optimal results in some cases, e.g., artifacts in complex regions and depth discontinuities around thin structures. We summarize them as depth ambiguities. In this paper, we propose an easy yet effective architecture, introducing semantic cues into supervision to solve problems mentioned above. First through our study on the problems we figure out that they are due to the limitation of the commonly applied photometric reconstruction training objective. Then we come up with our method using semantic cues to encode the geometry constraint behind view synthesis. The proposed novel objective is more credible towards confusing pixels, also takes an object-level perception. Experiments show that without introducing extra inference complexity, our method alleviates depth ambiguities greatly and performs comparably with state-of-the-art methods on KITTI benchmark.
引用
收藏
页码:3308 / 3312
页数:5
相关论文
共 50 条
  • [31] Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy
    Liu, Xingtong
    Sinha, Ayushi
    Unberath, Mathias
    Ishii, Masaru
    Hager, Gregory D.
    Taylor, Russell H.
    Reiter, Austin
    OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 128 - 138
  • [32] MonoVAN: Visual Attention for Self-Supervised Monocular Depth Estimation
    Indyk, Ilia
    Makarov, Ilya
    2023 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY, ISMAR, 2023, : 1211 - 1220
  • [33] Frequency-Aware Self-Supervised Monocular Depth Estimation
    Chen, Xingyu
    Li, Thomas H.
    Zhang, Ruonan
    Li, Ge
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5797 - 5806
  • [34] Self-Supervised Scale Recovery for Monocular Depth and Egomotion Estimation
    Wagstaff, Brandon
    Kelly, Jonathan
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 2620 - 2627
  • [35] Dual-attention-based semantic-aware self-supervised monocular depth estimation
    Xu, Jinze
    Ye, Feng
    Lai, Yizong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 65579 - 65601
  • [36] Image Masking for Robust Self-Supervised Monocular Depth Estimation
    Chawla, Hemang
    Jeeveswaran, Kishaan
    Arani, Elahe
    Zonooz, Bahram
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10054 - 10060
  • [37] Self-Supervised Monocular Depth Estimation by Digging into Uncertainty Quantification
    Yuan-Zhen Li
    Sheng-Jie Zheng
    Zi-Xin Tan
    Tuo Cao
    Fei Luo
    Chun-Xia Xiao
    Journal of Computer Science and Technology, 2023, 38 : 510 - 525
  • [38] Exploring the vulnerability of self-supervised monocular depth estimation models
    Hou, Ruitao
    Mo, Kanghua
    Long, Yucheng
    Li, Ning
    Rao, Yuan
    INFORMATION SCIENCES, 2024, 677
  • [39] Self-Supervised Monocular Depth Estimation Based on Channel Attention
    Tao, Bo
    Chen, Xinbo
    Tong, Xiliang
    Jiang, Du
    Chen, Baojia
    PHOTONICS, 2022, 9 (06)
  • [40] Deep Digging into the Generalization of Self-Supervised Monocular Depth Estimation
    Bae, Jinwoo
    Moon, Sungho
    Im, Sunghoon
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 187 - 196