Lie algebras with triality

被引:9
|
作者
Grishkov, A [1 ]
机构
[1] Univ Sao Paulo, IME, BR-005598 Sao Paulo, Brazil
关键词
D O I
10.1016/S0021-8693(03)00162-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By analogy with the definition of group with triality, we introduce Lie algebra with triality as Lie algebra L which admits the group of automorphisms S-3 = {sigma, rho \ sigma(2) = rho(3) = 1, sigmarhosigma = rho(2)} such that for any x is an element of L we have (x(sigma) - x) + (x(sigma) - x)(rho) + (x(sigma) x)(rho2) = 0. We describe the structure of finite-dimensional Lie algebra with triality over a field of characteristic 0 and give applications of Lie algebras with triality, to the theory of Malcev algebras. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:698 / 722
页数:25
相关论文
共 50 条
  • [31] Representations of ω-Lie algebras and tailed derivations of Lie algebras
    Zhang, Runxuan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (02) : 325 - 339
  • [32] On Lie-admissible algebras whose commutator Lie algebras are Lie subalgebras of prime associative algebras
    Beidar, KI
    Chebotar, MA
    JOURNAL OF ALGEBRA, 2000, 233 (02) : 675 - 703
  • [33] Algebras of quotients of Lie algebras
    Molina, MS
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 188 (1-3) : 175 - 188
  • [34] Super Yang-Mills, division algebras and triality
    Anastasiou, A.
    Borsten, L.
    Duff, M. J.
    Hughes, L. J.
    Nagy, S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [35] Lie algebras with BCL algebras
    Liu, Yonghong
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (02): : 444 - 448
  • [36] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [37] Lie algebras
    Selig, JM
    GEOMETRICAL FOUNDATIONS OF ROBOTICS, 2000, : 27 - 38
  • [38] DERIVATION ALGEBRAS OF LIE ALGEBRAS
    TOGO, S
    CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (02): : 201 - &
  • [39] ω-Lie algebras
    Zusmanovich, Pasha
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) : 1028 - 1044
  • [40] TRIALITY GROUPS ASSOCIATED WITH TRIPLE SYSTEMS AND THEIR HOMOTOPE ALGEBRAS
    Kamiya, Noriaki
    ANNALES MATHEMATICAE SILESIANAE, 2021, 35 (02) : 184 - 210