(alpha;
beta;
gamma) triple systems;
Freudenthal Kantor triple systems;
triality relations;
generalization of automorphisms and derivations;
D O I:
10.2478/amsil-2021-0001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We introduce the notion of an (alpha, beta, gamma) triple system, which generalizes the familiar generalized Jordan triple system related to a construction of simple Lie algebras. We then discuss its realization by considering some bilinear algebras and vice versa. Next, as a new concept, we study triality relations (a triality group and a triality derivation) associated with these triple systems; the relations are a generalization of the automorphisms and derivations of the triple systems. Also, we provide examples of several involutive triple systems with a tripotent element.
机构:
Univ Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
机构:
Univ Sao Paulo, Dept Matemat, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
Omsk State Univ, Omsk 644077, RussiaUniv Sao Paulo, Dept Matemat, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
Grishkov, Alexander N.
Zavarnitsine, Andrei V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Matemat, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil
Sobolev Inst Math, Novosibirsk 630090, RussiaUniv Sao Paulo, Dept Matemat, Caixa Postal 66281, BR-05311970 Sao Paulo, SP, Brazil