(alpha;
beta;
gamma) triple systems;
Freudenthal Kantor triple systems;
triality relations;
generalization of automorphisms and derivations;
D O I:
10.2478/amsil-2021-0001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We introduce the notion of an (alpha, beta, gamma) triple system, which generalizes the familiar generalized Jordan triple system related to a construction of simple Lie algebras. We then discuss its realization by considering some bilinear algebras and vice versa. Next, as a new concept, we study triality relations (a triality group and a triality derivation) associated with these triple systems; the relations are a generalization of the automorphisms and derivations of the triple systems. Also, we provide examples of several involutive triple systems with a tripotent element.
机构:
Univ Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USA
Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USAUniv Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USA
Foord, Adi
Gultekin, Kayhan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USAUniv Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USA
Gultekin, Kayhan
Runnoe, Jessie C.
论文数: 0引用数: 0
h-index: 0
机构:
Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USAUniv Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USA
Runnoe, Jessie C.
Koss, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Eureka Sci Inc, Oakland, CA 94602 USAUniv Michigan, Dept Astron & Astrophys, Ann Arbor, MI 48109 USA