A new characterization of the Gamma distribution and associated goodness-of-fit tests

被引:17
|
作者
Betsch, Steffen [1 ]
Ebner, Bruno [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Stochast, Englerstr 2, D-76128 Karlsruhe, Germany
关键词
Bootstrap procedure; Contiguous alternatives; Density approach; Gamma distribution; Goodness-of-fit tests; Stein's method; TRANSFORMATIONS; INDEPENDENCE; ALTERNATIVES; LIMIT;
D O I
10.1007/s00184-019-00708-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a class of weighted L2-type tests of fit to the Gamma distribution. Our novel procedure is based on a fixed point property of a newtransformation connected to a Steinian characterization of the family of Gamma distributions. We derive the weak limits of the statistic under the null hypothesis and under contiguous alternatives. The result on the limit null distribution is used to prove the asymptotic validity of the parametric bootstrap that is implemented to run the tests. Further, we establish the global consistency of our tests in this bootstrap setting, and conduct a Monte Carlo simulation study to show the competitiveness to existing test procedures.
引用
收藏
页码:779 / 806
页数:28
相关论文
共 50 条
  • [21] Goodness-of-Fit Tests for the Gamma Distribution Based on the Empirical Laplace Transform
    Henze, Norbert
    Meintanis, Simos G.
    Ebner, Bruno
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (09) : 1543 - 1556
  • [22] Cauchy or not Cauchy? New goodness-of-fit tests for the Cauchy distribution
    Bruno Ebner
    Lena Eid
    Bernhard Klar
    Statistical Papers, 2024, 65 : 45 - 78
  • [23] Cauchy or not Cauchy? New goodness-of-fit tests for the Cauchy distribution
    Ebner, Bruno
    Eid, Lena
    Klar, Bernhard
    STATISTICAL PAPERS, 2024, 65 (01) : 45 - 78
  • [24] New likelihood based goodness-of-fit tests for the Weibull distribution
    Krit, M.
    Gaudoin, O.
    Xie, M.
    Remy, E.
    SAFETY, RELIABILITY AND RISK ANALYSIS: BEYOND THE HORIZON, 2014, : 1193 - 1200
  • [25] Goodness-of-fit tests for a heavy tailed distribution
    Koning, Alex J.
    Peng, Liang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 3960 - 3981
  • [26] Goodness-of-fit tests for the bivariate Poisson distribution
    Novoa-Munoz, Francisco
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (07) : 1998 - 2014
  • [27] On Goodness-of-Fit Tests for the Neyman Type A Distribution
    Batsidis, Apostolos
    Lemonte, Artur J.
    REVSTAT-STATISTICAL JOURNAL, 2023, 21 (02) : 143 - 171
  • [28] Hypothesis Tests of Goodness-of-Fit for Frechet Distribution
    Abidin, N. Z.
    Adam, M. B.
    Midi, H.
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2014, 22 (02): : 419 - 432
  • [29] New Goodness-of-Fit Tests for Pareto I Type Distribution, Based on Some Characterization
    Ragozin I.A.
    Journal of Mathematical Sciences, 2022, 268 (5) : 684 - 692
  • [30] A Review of Goodness-of-Fit Tests for the Rayleigh Distribution
    Liebenberg, Shawn C.
    Allison, James S.
    AUSTRIAN JOURNAL OF STATISTICS, 2021, : 1 - 22