Cauchy or not Cauchy? New goodness-of-fit tests for the Cauchy distribution

被引:1
|
作者
Ebner, Bruno [1 ]
Eid, Lena [1 ]
Klar, Bernhard [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Stochast, Karlsruhe, Germany
关键词
Goodness-of-fit; Cauchy distribution; Hilbert-space valued random elements; EMPIRICAL CHARACTERISTIC FUNCTION; PARAMETERS; STATISTICS;
D O I
10.1007/s00362-022-01382-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new characterization of the Cauchy distribution and propose a class of goodness-of-fit tests for the Cauchy family. The limit distribution is derived in a Hilbert space framework under the null hypothesis. The new tests are consistent against a large class of alternatives. A comparative Monte Carlo simulation study shows that the test is a good competitor for the state of the art procedures, and we apply the tests to log-returns of cryptocurrencies.
引用
收藏
页码:45 / 78
页数:34
相关论文
共 50 条
  • [1] Cauchy or not Cauchy? New goodness-of-fit tests for the Cauchy distribution
    Bruno Ebner
    Lena Eid
    Bernhard Klar
    Statistical Papers, 2024, 65 : 45 - 78
  • [2] Goodness-of-fit tests for the Cauchy distribution
    Onen, BH
    Dietz, DC
    Yen, VC
    Moore, AH
    COMPUTATIONAL STATISTICS, 2001, 16 (01) : 97 - 107
  • [3] Goodness-of-fit tests for the Cauchy distribution
    Bora H. Onen
    Dennis C. Dietz
    Vincent C. Yen
    Albert H. Moore
    Computational Statistics, 2001, 16 : 97 - 107
  • [4] A new goodness-of-fit test for the Cauchy distribution
    Noughabi, Hadi Alizadeh
    Noughabi, Mohammad Shafaei
    CHILEAN JOURNAL OF STATISTICS, 2024, 15 (01): : 44 - 59
  • [5] A goodness-of-fit test for Cauchy distribution
    Rublík, F
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 17, 1998, : 71 - 81
  • [6] New goodness of fit tests for the Cauchy distribution
    Mahdizadeh, M.
    Zamanzade, Ehsan
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (06) : 1106 - 1121
  • [7] A Novel Goodness-of-Fit Test for Cauchy Distribution
    Pekgor, A.
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [8] Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function
    Gürtler, N
    Henze, N
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (02) : 267 - 286
  • [9] Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function
    Nora Gürtler
    Norbert Henze
    Annals of the Institute of Statistical Mathematics, 2000, 52 : 267 - 286
  • [10] Goodness-of-fit testing for the Cauchy distribution with application to financial modeling
    Mahdizadeh, M.
    Zamanzade, Ehsan
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 1167 - 1174