Resonance-Based Microwave Technique for Body Implant Sensing

被引:3
|
作者
Gonzalez-Lopez, Giselle [1 ]
Jofre Roca, Lluis [1 ]
Garcia de Valdecasas, Susana Amoros [1 ]
Rodriguez-Leor, Oriol [2 ,3 ,4 ]
Galvez-Monton, Carolina [2 ,5 ]
Bayes-Genis, Antoni [2 ,3 ,4 ,5 ]
O'Callaghan, Joan [1 ]
机构
[1] Univ Politecn Cataluna, Sch Telecommun Engn, ES-08034 Barcelona, Spain
[2] Inst Salud Carlos III, CIBERCV, Madrid 28029, Spain
[3] Germans Trias & Pujol Univ Hosp, Heart Inst iCor, Badalona 08916, Spain
[4] Univ Autonoma Barcelona, Dept Med, E-08193 Barcelona, Spain
[5] Hlth Sci Res Inst Germans Trias & Pujol, ICREC Res Program, Can Ruti Campus, Badalona 08916, Spain
关键词
microwave sensing; biosensing; object localization; implant; differential resonance; stent; non-ionizing; phantom; relative permittivity;
D O I
10.3390/s19224828
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There is an increasing need for safe and simple techniques for sensing devices and prostheses implanted inside the human body. Microwave wireless inspection may be an appropriate technique for it. The implanted device may have specific characteristics that allow to distinguish it from its environment. A new sensing technique based on the principle of differential resonance is proposed and its basic parameters are discussed. This technique allows to use the implant as a signal scattering device and to detect changes produced in the implant based on the corresponding change in its scattering signature. The technique is first tested with a canonic human phantom and then applied to a real in vivo clinical experiment to detect coronary stents implanted in swine animals.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Surface plasmon resonance-based immunoassay for procalcitonin
    Vashist, Sandeep Kumar
    Schneider, E. Marion
    Barth, Eberhard
    Luong, John H. T.
    ANALYTICA CHIMICA ACTA, 2016, 938 : 129 - 136
  • [42] An Fe complex for 19F magnetic resonance-based reversible redox sensing and multicolor imaging
    Kadakia, Rahul T.
    Ryan, Raphael T.
    Cooke, Daniel J.
    Que, Emily L.
    CHEMICAL SCIENCE, 2023, 14 (19) : 5099 - 5105
  • [43] Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing
    Hanif, Muhammad
    Juluri, Raghavendra R.
    Fojan, Peter
    Popok, Vladimir N.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2016, 6 (05): : 1564 - 1568
  • [44] Electric Fano resonance-based terahertz metasensors
    Wang, Ride
    Xu, Lei
    Wang, Jiayi
    Sun, Lang
    Jiao, Yanan
    Meng, Yuan
    Chen, Shuo
    Chang, Chao
    Fan, Chunhai
    NANOSCALE, 2021, 13 (44) : 18467 - 18472
  • [45] The future of magnetic resonance-based techniques in neurology
    Matthews, PM
    De Stefano, N
    Fazekas, F
    Filippi, M
    Miller, D
    Seitz, RJ
    EUROPEAN JOURNAL OF NEUROLOGY, 2001, 8 (01) : 17 - 25
  • [46] Resonance-based Addressing in Laminate MEMS Devices
    Wang, Minfeng
    Zhang, Yang
    Li, G. P.
    Bachman, Mark
    2012 IEEE 62ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2012, : 2048 - 2052
  • [47] Resonance-Based Wireless Energizing of Piezoelectric Components
    Bhuyan, Satyanarayan
    Sivanand, K.
    Panda, Sanjib K.
    Kumar, R.
    Hu, Junhui
    IEEE MAGNETICS LETTERS, 2011, 2 : 6000204
  • [48] Diaphragm resonance-based fiber optic hydrophone
    Saxena, Indu Fiesler
    Guzman, Narciso
    Hui, Kaleonui J.
    Pflanze, Stephen
    PHOTONICS IN THE TRANSPORTATION INDUSTRY: AUTO TO AEROSPACE III, 2010, 7675
  • [49] SIMPLE SURFACE PLASMON RESONANCE-BASED DOSEMETER
    Urbonavicius, Benas Gabrielis
    Adliene, Diana
    RADIATION PROTECTION DOSIMETRY, 2016, 169 (1-4) : 336 - 339
  • [50] Stochastic resonance-based input circuits for SQUIDs
    Turutanov, OG
    Omelyanchouk, AN
    Shnyrkov, VI
    Bliokh, YP
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 372 : 237 - 239