Multidimensional spectral order for selfadjoint operators

被引:0
|
作者
Planeta, Artur [1 ]
机构
[1] Agr Univ Krakow, Katedra Zastosowan Matemat, Ul Balicka 253 C, PL-30198 Krakow, Poland
关键词
Spectral order; Joint spectral measure; Joint bounded vectors; Integral inequalities; Separately increasing function; AUTOMORPHISMS;
D O I
10.1016/j.jmaa.2020.124265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of the spectral order is extended to finite families of pairwise commuting bounded and unbounded selfadjoint operators in Hilbert space. It is shown that the multidimensional spectral order (sic) is preserved by transformations represented by spectral integrals of separately increasing Borel functions on R-kappa. In particular, the kappa-dimensional spectral order is the restriction of product of kappa spectral orders for selfadjoint operators. In the context of positive kappa-tuples of pairwise commuting selfadjoint operator, the relation A (sic) B holds if and only if A(alpha) <= B-alpha for every kappa-tuples of nonnegative integer numbers alpha. (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Congruence of selfadjoint operators
    Fongi, Guillermina
    Maestripieri, Alejandra
    POSITIVITY, 2009, 13 (04) : 759 - 770
  • [42] Congruence of selfadjoint operators
    Guillermina Fongi
    Alejandra Maestripieri
    Positivity, 2009, 13 : 759 - 770
  • [43] Generalized Selfadjoint Operators
    Ivasiuk, Ivan Ya.
    MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 1: OPERATOR THEORY AND RELATED TOPICS, 2009, 190 : 329 - 334
  • [44] On Selfadjoint Homogeneous Operators
    Bekker, Borislava
    Bekker, Miron B.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (01) : 9 - 31
  • [45] A NOTE ON SELFADJOINT OPERATORS
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2): : 96 - &
  • [46] SELFADJOINT OPERATORS, NORMAL OPERATORS, AND CHARACTERIZATIONS
    Seddik, Ameur
    OPERATORS AND MATRICES, 2019, 13 (03): : 835 - 842
  • [47] Spectral properties of non-selfadjoint Hill's operators with smooth potentials
    Sansuc, JJ
    Tkachenko, V
    ALGEBRAIC AND GEOMETRIC METHODS IN MATHEMATICAL PHYSICS, 1996, 19 : 371 - 385
  • [49] On Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces and Eigenvalues in Spectral Gaps
    Jussi Behrndt
    Roland Möws
    Carsten Trunk
    Complex Analysis and Operator Theory, 2014, 8 : 925 - 936
  • [50] Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-selfadjoint Operators
    Shafarevich, Andrei
    FORMAL AND ANALYTIC SOLUTIONS OF DIFF. EQUATIONS, 2018, 256 : 177 - 187