Multidimensional spectral order for selfadjoint operators

被引:0
|
作者
Planeta, Artur [1 ]
机构
[1] Agr Univ Krakow, Katedra Zastosowan Matemat, Ul Balicka 253 C, PL-30198 Krakow, Poland
关键词
Spectral order; Joint spectral measure; Joint bounded vectors; Integral inequalities; Separately increasing function; AUTOMORPHISMS;
D O I
10.1016/j.jmaa.2020.124265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of the spectral order is extended to finite families of pairwise commuting bounded and unbounded selfadjoint operators in Hilbert space. It is shown that the multidimensional spectral order (sic) is preserved by transformations represented by spectral integrals of separately increasing Borel functions on R-kappa. In particular, the kappa-dimensional spectral order is the restriction of product of kappa spectral orders for selfadjoint operators. In the context of positive kappa-tuples of pairwise commuting selfadjoint operator, the relation A (sic) B holds if and only if A(alpha) <= B-alpha for every kappa-tuples of nonnegative integer numbers alpha. (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Spectral Multipliers for Multidimensional Bessel Operators
    J. J. Betancor
    A. J. Castro
    J. Curbelo
    Journal of Fourier Analysis and Applications, 2011, 17 : 932 - 975
  • [32] Spectral Multipliers for Multidimensional Bessel Operators
    Betancor, J. J.
    Castro, A. J.
    Curbelo, J.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (05) : 932 - 975
  • [33] On Selfadjoint Homogeneous Operators
    Borislava Bekker
    Miron B. Bekker
    Complex Analysis and Operator Theory, 2013, 7 : 9 - 31
  • [34] Spectral estimates and non-selfadjoint perturbations of spheroidal wave operators
    Finster, Felix
    Schmid, Harald
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 601 : 71 - 107
  • [36] A Remark on Spectral Properties of Certain Non-selfadjoint Schrodinger Operators
    Aiba, Daisuke
    TOKYO JOURNAL OF MATHEMATICS, 2013, 36 (02) : 337 - 345
  • [37] CHARACTERIZATIONS OF SELFADJOINT OPERATORS
    Sebestyen, Zoltan
    Tarcsay, Zsigmond
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2013, 50 (04) : 423 - 435
  • [38] Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators
    Bairamov, E
    Çelebi, AO
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200): : 371 - 384
  • [39] Spectral theory of some non-selfadjoint linear differential operators
    Pelloni, B.
    Smith, D. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [40] Non-selfadjoint difference operators and Jacobi matrices with spectral singularities
    Bairamov, E
    Çakar, Ö
    Krall, AM
    MATHEMATISCHE NACHRICHTEN, 2001, 229 : 5 - 14