Covering and packing in linear space

被引:3
|
作者
Bjorklund, Andreas [2 ]
Husfeldt, Thore [2 ,3 ]
Kaski, Petteri [4 ]
Koivisto, Mikko [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, FI-00014 Helsinki, Finland
[2] Lund Univ, Dept Comp Sci, SE-22100 Lund, Sweden
[3] IT Univ Copenhagen, Copenhagen S, Denmark
[4] Aalto Univ, Dept Informat & Comp Sci, Helsinki Inst Informat Technol HIIT, FI-00076 Aalto, Finland
基金
芬兰科学院; 瑞典研究理事会;
关键词
Algorithms; Chromatic polynomial; Zeta transform; SETS;
D O I
10.1016/j.ipl.2011.08.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fastest known algorithms for the k-cover and the k-packing problem rely on inclusion-exclusion and fast zeta transform, taking time and space 2(n), up to a factor polynomial in the size of the universe n. Here, we introduce a new, fast zeta transform algorithm that improves the space requirement to only linear in the size of the given set family, while not increasing the time requirement. Thus, for instance, the chromatic or domatic number of an n-vertex graph can be found in time within a polynomial factor of 2(n) and space O(1.442(n)) or O(1.716(n)), respectively. For computing the chromatic polynomial, we further reduce the space requirement to O(1.292(n)). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1033 / 1036
页数:4
相关论文
共 50 条
  • [31] PACKING AND COVERING A TREE BY SUBTREES
    BARANY, I
    EDMONDS, J
    WOLSEY, LA
    COMBINATORICA, 1986, 6 (03) : 221 - 233
  • [32] Covering and Packing of Rectilinear Subdivision
    Jana, Satyabrata
    Pandit, Supantha
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2019), 2019, 11355 : 381 - 393
  • [33] Packing and Covering Directed Triangles
    Jessica McDonald
    Gregory J. Puleo
    Craig Tennenhouse
    Graphs and Combinatorics, 2020, 36 : 1059 - 1063
  • [34] ON PACKING AND COVERING NUMBERS OF GRAPHS
    TOPP, J
    VOLKMANN, L
    DISCRETE MATHEMATICS, 1991, 96 (03) : 229 - 238
  • [35] EXTREMAL PACKING AND COVERING SETS
    HANS, RJ
    MONATSHEFTE FUR MATHEMATIK, 1967, 71 (03): : 203 - &
  • [36] Extensions of matroid covering and packing
    Fan, Genghua
    Jiang, Hongbi
    Li, Ping
    West, Douglas B.
    Yang, Daqing
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 76 : 117 - 122
  • [37] Packing and covering groups with subgroups
    Jungnickel, D
    Storme, L
    JOURNAL OF ALGEBRA, 2001, 239 (01) : 191 - 214
  • [38] Packing and covering dense graphs
    Alon, N
    Caro, Y
    Yuster, R
    JOURNAL OF COMBINATORIAL DESIGNS, 1998, 6 (06) : 451 - 472
  • [39] MULTIPLE PACKING AND COVERING OF SPHERES
    FEJESTOTH, G
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (1-2): : 165 - 176
  • [40] Packing, tiling, and covering with tetrahedra
    Conway, J. H.
    Torquato, S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (28) : 10612 - 10617