Covering and packing in linear space

被引:3
|
作者
Bjorklund, Andreas [2 ]
Husfeldt, Thore [2 ,3 ]
Kaski, Petteri [4 ]
Koivisto, Mikko [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, FI-00014 Helsinki, Finland
[2] Lund Univ, Dept Comp Sci, SE-22100 Lund, Sweden
[3] IT Univ Copenhagen, Copenhagen S, Denmark
[4] Aalto Univ, Dept Informat & Comp Sci, Helsinki Inst Informat Technol HIIT, FI-00076 Aalto, Finland
基金
芬兰科学院; 瑞典研究理事会;
关键词
Algorithms; Chromatic polynomial; Zeta transform; SETS;
D O I
10.1016/j.ipl.2011.08.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fastest known algorithms for the k-cover and the k-packing problem rely on inclusion-exclusion and fast zeta transform, taking time and space 2(n), up to a factor polynomial in the size of the universe n. Here, we introduce a new, fast zeta transform algorithm that improves the space requirement to only linear in the size of the given set family, while not increasing the time requirement. Thus, for instance, the chromatic or domatic number of an n-vertex graph can be found in time within a polynomial factor of 2(n) and space O(1.442(n)) or O(1.716(n)), respectively. For computing the chromatic polynomial, we further reduce the space requirement to O(1.292(n)). (C) 2011 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1033 / 1036
页数:4
相关论文
共 50 条
  • [21] An improvement of an inequality linking packing and covering densities in 3-space
    Smith, E
    GEOMETRIAE DEDICATA, 2006, 117 (01) : 11 - 18
  • [22] Packing and covering tetrahedra
    Ghosh, S. K.
    Haxell, P. E.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (09) : 1209 - 1215
  • [23] Covering and packing for pairs
    Chee, Yeow Meng
    Colbourn, Charles J.
    Ling, Alan C. H.
    Wilson, Richard M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1440 - 1449
  • [24] ELEMENTS OF PACKING AND COVERING
    OLER, N
    CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (05): : 671 - &
  • [25] Packing and Covering with Segments
    Mitchell, Joseph S. B.
    Pandit, Supantha
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 198 - 210
  • [26] PACKING AND COVERING WITH ARBORESCENCES
    蔡茂诚
    Journal of Systems Science & Complexity, 1991, (04) : 362 - 367
  • [27] TILING, PACKING, AND COVERING BY CLUSTERS
    STEIN, S
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1986, 16 (02) : 277 - 321
  • [28] ROGERS,CA - PACKING AND COVERING
    MOSER, WOJ
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (04): : 537 - &
  • [29] SOME PACKING AND COVERING THEOREMS
    MOON, JW
    MOSER, L
    COLLOQUIUM MATHEMATICUM, 1967, 17 (01) : 103 - &
  • [30] Packing and Covering Directed Triangles
    McDonald, Jessica
    Puleo, Gregory J.
    Tennenhouse, Craig
    GRAPHS AND COMBINATORICS, 2020, 36 (04) : 1059 - 1063