Stability of a saddle node bifurcation under numerical approximations

被引:3
|
作者
Li, MC [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
基金
英国医学研究理事会;
关键词
stability; bifurcation; saddle node; numerical approximation;
D O I
10.1016/j.camwa.2004.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the solution flows generated by a one-parameter family of ordinary differential equations are stable under their numerical approximations in a vicinity of a saddle node. Our result sharpens the one in [1] and the proof is adapted from the method of Sotomayor in [2,3]. (c) 2005 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1849 / 1852
页数:4
相关论文
共 50 条
  • [1] NUMERICAL COMPUTATION OF SADDLE-NODE HOMOCLINIC BIFURCATION POINTS
    SCHECTER, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) : 1155 - 1178
  • [2] Saddle Node Bifurcation and Voltage Stability Analysis of Sri Lanka
    Gurusinghe, Dinesh Rangana
    ENGINEER-JOURNAL OF THE INSTITUTION OF ENGINEERS SRI LANKA, 2012, 45 (04): : 23 - 30
  • [3] Voltage stability - Case study of saddle node bifurcation with stochastic load dynamics
    Kumaran, R. Chendur
    Venkatesh, T. G.
    Swarup, K. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (08) : 1384 - 1388
  • [4] Numerical study of saddle-node bifurcation for longitudinal flight with CFD/RBD technique
    Chen Qi
    Yuan Xianxu
    Wang Xinguang
    Chen Jianqiang
    Xie Yufei
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 29 : 153 - 162
  • [5] Shilnikov's saddle-node bifurcation
    Glendinning, P
    Sparrow, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1153 - 1160
  • [6] Regularization of the Boundary-Saddle-Node Bifurcation
    Liu, Xia
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [7] Saddle-node bifurcation of viscous profiles
    Achleitner, Franz
    Szmolyan, Peter
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (20) : 1703 - 1717
  • [8] A DOUBLE SADDLE-NODE BIFURCATION THEOREM
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2923 - 2933
  • [9] On saddle-node bifurcation and chaos of satellites
    Beda, PB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4881 - 4886
  • [10] Stability of periodic solutions and saddle-node bifurcation set of nonlinear Zener models
    Yu L.
    Wu S.
    Li G.
    Ding W.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (04): : 75 - 81