Stability of a saddle node bifurcation under numerical approximations

被引:3
|
作者
Li, MC [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
基金
英国医学研究理事会;
关键词
stability; bifurcation; saddle node; numerical approximation;
D O I
10.1016/j.camwa.2004.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the solution flows generated by a one-parameter family of ordinary differential equations are stable under their numerical approximations in a vicinity of a saddle node. Our result sharpens the one in [1] and the proof is adapted from the method of Sotomayor in [2,3]. (c) 2005 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1849 / 1852
页数:4
相关论文
共 50 条
  • [21] Coulomb-actuated microbeams revisited: experimental and numerical modal decomposition of the saddle-node bifurcation
    Anton Melnikov
    Hermann A. G. Schenk
    Jorge M. Monsalve
    Franziska Wall
    Michael Stolz
    Andreas Mrosk
    Sergiu Langa
    Bert Kaiser
    Microsystems & Nanoengineering, 7
  • [22] Coulomb-actuated microbeams revisited: experimental and numerical modal decomposition of the saddle-node bifurcation
    Melnikov, Anton
    Schenk, Hermann A. G.
    Monsalve, Jorge M.
    Wall, Franziska
    Stolz, Michael
    Mrosk, Andreas
    Langa, Sergiu
    Kaiser, Bert
    MICROSYSTEMS & NANOENGINEERING, 2021, 7 (01)
  • [23] Boundary-derivative direct method for computing saddle node bifurcation points in voltage stability analysis
    Jiang, Tong
    Wan, Kaiyao
    Feng, Zhuocheng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 112 : 199 - 208
  • [24] NONAUTONOMOUS SADDLE-NODE BIFURCATION IN A CANONICAL ELECTROSTATIC MEMS
    Gutierrez, Alexander
    Torres, Pedro J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05):
  • [25] Asymptotics of the Solution of a Differential Equation in a Saddle-Node Bifurcation
    Kalyakin, L. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (09) : 1454 - 1469
  • [26] QUASI-TRANSVERSAL SADDLE-NODE BIFURCATION ON SURFACES
    BELOQUI, J
    PACIFICO, MJ
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 : 63 - 88
  • [27] REAL SADDLE-NODE BIFURCATION FROM A COMPLEX VIEWPOINT
    Misiurewicz, Michal
    Perez, Rodrigo A.
    CONFORMAL GEOMETRY AND DYNAMICS, 2008, 12 : 97 - 108
  • [28] BASIN ORGANIZATION PRIOR TO A TANGLED SADDLE-NODE BIFURCATION
    Soliman, Mohamed S.
    Thompson, J. M. T.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01): : 107 - 118
  • [29] BREAKING OF SYMMETRY IN THE SADDLE-NODE HOPF-BIFURCATION
    KIRK, V
    PHYSICS LETTERS A, 1991, 154 (5-6) : 243 - 248
  • [30] An isolated saddle-node bifurcation occurring inside a horseshoe
    Cao, YL
    Kiriki, S
    DYNAMICS AND STABILITY OF SYSTEMS, 2000, 15 (01): : 11 - 22