A LANDAU-GINZBURG MIRROR THEOREM WITHOUT CONCAVITY

被引:13
|
作者
Guere, Jeremy [1 ]
机构
[1] Inst Math Jussieu, Paris, France
关键词
GROMOV-WITTEN INVARIANTS; YAU CORRESPONDENCE; RIEMANN-ROCH; LEFSCHETZ; SPACE; SYMMETRY; CURVES;
D O I
10.1215/00127094-3477235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a mirror symmetry theorem in a range of cases where state-of-the-art techniques that rely on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials (named for the Fan, Jarvis, Ruan, and Witten quantum singularity theory) which is viewed as the counterpart of a nonconvex Gromov-Witten potential via the physical Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob's virtual cycle in genus zero. In the nonconcave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory.
引用
收藏
页码:2461 / 2527
页数:67
相关论文
共 50 条
  • [41] DUALITY AND LANDAU-GINZBURG MODELS
    CHUN, EJ
    MAS, J
    LAUER, J
    NILLES, HP
    PHYSICS LETTERS B, 1989, 233 (1-2) : 141 - 146
  • [42] Non-compact Gepner models, Landau-Ginzburg orbifolds and mirror symmetry
    Ashok, Sujay K.
    Benichou, Raphael
    Troost, Jan
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (01):
  • [43] A GLOBAL MIRROR SYMMETRY FRAMEWORK FOR THE LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE
    Chiodo, Alessandro
    Ruan, Yongbin
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) : 2803 - 2864
  • [44] A Lie theoretical construction of a Landau-Ginzburg model without projective mirrors
    Ballico, E.
    Barmeier, S.
    Gasparim, E.
    Grama, L.
    San Martin, L. A. B.
    MANUSCRIPTA MATHEMATICA, 2019, 158 (1-2) : 85 - 101
  • [45] Derived Knorrer periodicity and Orlov's theorem for gauged Landau-Ginzburg models
    Hirano, Yuki
    COMPOSITIO MATHEMATICA, 2017, 153 (05) : 973 - 1007
  • [46] A combinatorial calculation of the Landau-Ginzburg model
    Nadler, David
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (01): : 519 - 532
  • [47] Supersymmetric Landau-Ginzburg tensor models
    Chang, Chi-Ming
    Colin-Ellerin, Sean
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [48] Extending Landau-Ginzburg Models to the Point
    Carqueville, Nils
    Montoya, Flavio Montiel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (03) : 955 - 977
  • [49] ON THE POINCARE POLYNOMIALS FOR LANDAU-GINZBURG ORBIFOLDS
    SATO, H
    MODERN PHYSICS LETTERS A, 1994, 9 (10) : 885 - 893
  • [50] Landau-Ginzburg Orbifolds with Discrete Torsion
    Kreuzer, M.
    Skarke, H.
    Magnetic Resonance in Chemistry, 1994, 32 (12-14)