A LANDAU-GINZBURG MIRROR THEOREM WITHOUT CONCAVITY

被引:13
|
作者
Guere, Jeremy [1 ]
机构
[1] Inst Math Jussieu, Paris, France
关键词
GROMOV-WITTEN INVARIANTS; YAU CORRESPONDENCE; RIEMANN-ROCH; LEFSCHETZ; SPACE; SYMMETRY; CURVES;
D O I
10.1215/00127094-3477235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a mirror symmetry theorem in a range of cases where state-of-the-art techniques that rely on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials (named for the Fan, Jarvis, Ruan, and Witten quantum singularity theory) which is viewed as the counterpart of a nonconvex Gromov-Witten potential via the physical Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob's virtual cycle in genus zero. In the nonconcave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory.
引用
收藏
页码:2461 / 2527
页数:67
相关论文
共 50 条
  • [31] Small Landau-Ginzburg theories
    Sean M. Gholson
    Ilarion V. Melnikov
    Journal of High Energy Physics, 2019
  • [32] MICROEMULSIONS - A LANDAU-GINZBURG THEORY
    CHEN, K
    JAYAPRAKASH, C
    PANDIT, R
    WENZEL, W
    PHYSICAL REVIEW LETTERS, 1990, 65 (21) : 2736 - 2739
  • [33] LANDAU-GINZBURG THEORIES AS ORBIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    PHYSICS LETTERS B, 1990, 249 (02) : 237 - 242
  • [34] Topological, Landau-Ginzburg models
    Vafa, C.
    Proceedings of the Summer School in High Energy Physics and Cosmology, 1992,
  • [35] LANDAU-GINZBURG THEORIES AS ORBIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    PHYSICS LETTERS B, 1991, 268 (01) : 47 - 52
  • [36] LANDAU-GINZBURG STRING VACUA
    KLEMM, A
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1994, 411 (2-3) : 559 - 583
  • [37] Lattices for Landau-Ginzburg orbifolds
    Ebeling, Wolfgang
    Takahashi, Atsushi
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 639 - 659
  • [38] Small Landau-Ginzburg theories
    Gholson, Sean M.
    Melnikov, Ilarion V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
  • [39] TOPOLOGICAL LANDAU-GINZBURG MODELS
    VAFA, C
    MODERN PHYSICS LETTERS A, 1991, 6 (04) : 337 - 346
  • [40] Toric Landau-Ginzburg models
    Przyjalkowski, V. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (06) : 1033 - 1118