A LANDAU-GINZBURG MIRROR THEOREM WITHOUT CONCAVITY

被引:13
|
作者
Guere, Jeremy [1 ]
机构
[1] Inst Math Jussieu, Paris, France
关键词
GROMOV-WITTEN INVARIANTS; YAU CORRESPONDENCE; RIEMANN-ROCH; LEFSCHETZ; SPACE; SYMMETRY; CURVES;
D O I
10.1215/00127094-3477235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a mirror symmetry theorem in a range of cases where state-of-the-art techniques that rely on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials (named for the Fan, Jarvis, Ruan, and Witten quantum singularity theory) which is viewed as the counterpart of a nonconvex Gromov-Witten potential via the physical Landau-Ginzburg/Calabi-Yau (LG/CY) correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob's virtual cycle in genus zero. In the nonconcave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory.
引用
收藏
页码:2461 / 2527
页数:67
相关论文
共 50 条
  • [1] A mirror theorem between Landau-Ginzburg models
    Li, Si
    NUCLEAR PHYSICS B, 2015, 898 : 707 - 714
  • [2] A Landau-Ginzburg mirror theorem via matrix factorizations
    He, Weiqiang
    Polishchuk, Alexander
    Shen, Yefeng
    Vaintrob, Arkady
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (794): : 55 - 100
  • [3] Landau-Ginzburg mirror symmetry conjecture
    He, Weiqiang
    Li, Si
    Shen, Yefeng
    Webb, Rachel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) : 2915 - 2978
  • [4] EQUIVARIANT LANDAU-GINZBURG MIRROR SYMMETRY
    Guere, Jeremy
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (01): : 243 - 256
  • [5] NO MIRROR SYMMETRY IN LANDAU-GINZBURG SPECTRA
    KREUZER, M
    SKARKE, H
    NUCLEAR PHYSICS B, 1992, 388 (01) : 113 - 130
  • [6] Mirror Symmetry for Nonabelian Landau-Ginzburg Models
    Priddis, Nathan
    Ward, Joseph
    Williams, Matthew M.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [7] LANDAU-GINZBURG MODELS IN REAL MIRROR SYMMETRY
    Walcher, Johannes
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) : 2865 - 2883
  • [8] ABELIAN LANDAU-GINZBURG ORBIFOLDS AND MIRROR SYMMETRY
    KREUZER, M
    SCHIMMRIGK, R
    SKARKE, H
    NUCLEAR PHYSICS B, 1992, 372 (1-2) : 61 - 86
  • [9] The proper Landau-Ginzburg potential is the open mirror map
    Grafnitz, Tim
    Ruddat, Helge
    Zaslow, Eric
    ADVANCES IN MATHEMATICS, 2024, 447
  • [10] Mirror symmetry and the web of Landau-Ginzburg string vacua
    Sato, H
    NUCLEAR PHYSICS B, 1997, 505 (03) : 660 - 678