Stimulation of anaerobic organic matter decomposition by subsurface organic N addition in tundra soils

被引:14
|
作者
Philben, Michael [1 ]
Zheng, Jianqiu [2 ,6 ]
Bill, Markus [3 ]
Heikoop, Jeffrey M. [4 ]
Perkins, George [4 ]
Yang, Ziming [5 ]
Wullschleger, Stan D. [1 ]
Graham, David E. [2 ]
Gu, Baohua [1 ]
机构
[1] Oak Ridge Natl Lab, Environm Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA
[3] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA
[4] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA
[5] Oakland Univ, Dept Chem, Rochester, MI 48309 USA
[6] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA
来源
关键词
Anaerobic C mineralization; Microbial N limitation; Fermentation; Tundra; Methanogenesis; Stable isotope labeling; LITTER DECOMPOSITION; NITROGEN LIMITATION; MICROBIAL ACTIVITY; METHANE PRODUCTION; ALASKAN TUNDRA; AMINO-ACIDS; BOREAL MIRE; PERMAFROST; CARBON; TEMPERATURE;
D O I
10.1016/j.soilbio.2018.12.009
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Increasing nitrogen (N) availability in Arctic soils could stimulate the growth of both plants and microorganisms by relieving the constraints of nutrient limitation. It was hypothesized that organic N addition to anoxic tundra soil would increase CH4 production by stimulating the fermentation of labile substrates, which is considered the rate-limiting step in anaerobic C mineralization. We tested this hypothesis through both field and lab-based experiments. In the field experiment, we injected a solution of C-13- and N-15-labeled glutamate 35 cm below ground at a site near Nome on the Seward Peninsula, Alaska, and observed the resulting changes in porewater geochemistry and dissolved greenhouse gas concentrations. The concentration of free glutamate declined rapidly within hours of injection, and the N-15 label was recovered almost exclusively as dissolved organic N within 62 h. These results indicate rapid microbial assimilation of the added N and transformation into novel organic compounds. We observed increasing concentrations of dissolved CH4 and Fe(II), indicating rapid stimulation of methanogenesis and Fe(III) reduction. Low molecular weight organic acids such as acetate and propionate accumulated despite increasing consumption through anaerobic C mineralization. A laboratory soil column flow experiment using active layer soil collected from the same site further supported these findings. Glutamate recovery was low compared to a conservative bromide tracer, but concentrations of NO3- and NH4+ remained low, consistent with microbial uptake of the added N. Similar to the field experiment, we observed both increasing Fe(II) and organic acid concentrations. Together, these results support our hypothesis of increased fermentation in response to organic N addition and suggest that increasing N availability could accelerate CH4 production in tundra soils.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [31] Soil organic matter affects arsenic and antimony sorption in anaerobic soils
    Verbeeck, Mieke
    Thiry, Yves
    Smolders, Erik
    ENVIRONMENTAL POLLUTION, 2020, 257
  • [32] Microbiological Transformation of Organic Matter in Oil-Polluted Tundra Soils after Their Reclamation
    Maslov, M. N.
    Maslova, O. A.
    Ezhelev, Z. S.
    EURASIAN SOIL SCIENCE, 2019, 52 (01) : 58 - 65
  • [33] Microbiological Transformation of Organic Matter in Oil-Polluted Tundra Soils after Their Reclamation
    M. N. Maslov
    O. A. Maslova
    Z. S. Ezhelev
    Eurasian Soil Science, 2019, 52 : 58 - 65
  • [34] Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest?
    Kristensen, E
    Ahmed, SI
    Devol, AH
    LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (08) : 1430 - 1437
  • [35] Response of peat decomposition to corn straw addition in managed organic soils
    Bader, Cedric
    Mueller, Moritz
    Szidat, Sonke
    Schulin, Rainer
    Leifeld, Jens
    GEODERMA, 2018, 309 : 75 - 83
  • [36] Effects of Stockpiling and Organic Matter Addition on Nutrient Bioavailability in Reclamation Soils
    Das Gupta, Sanatan
    Kirby, William
    Pinno, Bradley D.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2019, 83 : S27 - S41
  • [37] Organic matter addition promotes Cd immobilization in alkaline paddy soils
    Sun Z.
    Zhang W.
    Sun H.
    Wang J.
    Chen Q.
    Yuan C.
    Carbon Research, 2 (1):
  • [38] Differential stimulation of haloreduction by carbon addition to subsurface soils
    Panciera, MA
    Zelennikova, O
    Smets, BF
    Dobbs, GM
    ANAEROBIC DEGRADATION OF CHLORINATED SOLVENTS, 2001, 6 (07): : 69 - 76
  • [39] Decomposition of the organic matter of natural and concentrated vinasse in sandy and clayey soils
    Possignolo-Vitti, Nadia Valerio
    Bertoncini, Edna Ivani
    Vitti, Andre Cesar
    WATER SCIENCE AND TECHNOLOGY, 2017, 76 (03) : 728 - 738
  • [40] The influence of the decomposition of organic matter on the oxidation-reduction potential of soils
    Burrows, W
    Cordon, TC
    SOIL SCIENCE, 1936, 42 (01) : 1 - 10