Stimulation of anaerobic organic matter decomposition by subsurface organic N addition in tundra soils

被引:14
|
作者
Philben, Michael [1 ]
Zheng, Jianqiu [2 ,6 ]
Bill, Markus [3 ]
Heikoop, Jeffrey M. [4 ]
Perkins, George [4 ]
Yang, Ziming [5 ]
Wullschleger, Stan D. [1 ]
Graham, David E. [2 ]
Gu, Baohua [1 ]
机构
[1] Oak Ridge Natl Lab, Environm Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA
[3] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA
[4] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA
[5] Oakland Univ, Dept Chem, Rochester, MI 48309 USA
[6] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA
来源
关键词
Anaerobic C mineralization; Microbial N limitation; Fermentation; Tundra; Methanogenesis; Stable isotope labeling; LITTER DECOMPOSITION; NITROGEN LIMITATION; MICROBIAL ACTIVITY; METHANE PRODUCTION; ALASKAN TUNDRA; AMINO-ACIDS; BOREAL MIRE; PERMAFROST; CARBON; TEMPERATURE;
D O I
10.1016/j.soilbio.2018.12.009
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Increasing nitrogen (N) availability in Arctic soils could stimulate the growth of both plants and microorganisms by relieving the constraints of nutrient limitation. It was hypothesized that organic N addition to anoxic tundra soil would increase CH4 production by stimulating the fermentation of labile substrates, which is considered the rate-limiting step in anaerobic C mineralization. We tested this hypothesis through both field and lab-based experiments. In the field experiment, we injected a solution of C-13- and N-15-labeled glutamate 35 cm below ground at a site near Nome on the Seward Peninsula, Alaska, and observed the resulting changes in porewater geochemistry and dissolved greenhouse gas concentrations. The concentration of free glutamate declined rapidly within hours of injection, and the N-15 label was recovered almost exclusively as dissolved organic N within 62 h. These results indicate rapid microbial assimilation of the added N and transformation into novel organic compounds. We observed increasing concentrations of dissolved CH4 and Fe(II), indicating rapid stimulation of methanogenesis and Fe(III) reduction. Low molecular weight organic acids such as acetate and propionate accumulated despite increasing consumption through anaerobic C mineralization. A laboratory soil column flow experiment using active layer soil collected from the same site further supported these findings. Glutamate recovery was low compared to a conservative bromide tracer, but concentrations of NO3- and NH4+ remained low, consistent with microbial uptake of the added N. Similar to the field experiment, we observed both increasing Fe(II) and organic acid concentrations. Together, these results support our hypothesis of increased fermentation in response to organic N addition and suggest that increasing N availability could accelerate CH4 production in tundra soils.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [21] Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem
    Nowinski, Nicole S.
    Trumbore, Susan E.
    Schuur, Edward A. G.
    Mack, Michelle C.
    Shaver, Gaius R.
    ECOSYSTEMS, 2008, 11 (01) : 16 - 25
  • [22] Nutrient Addition Prompts Rapid Destabilization of Organic Matter in an Arctic Tundra Ecosystem
    Nicole S. Nowinski
    Susan E. Trumbore
    Edward A. G. Schuur
    Michelle C. Mack
    Gaius R. Shaver
    Ecosystems, 2008, 11 : 16 - 25
  • [23] Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils
    Zhao, Qian
    Thompson, Allison M.
    Callister, Stephen J.
    Tfaily, Malak M.
    Bell, Sheryl L.
    Hobbie, Sarah E.
    Hofmockel, Kirsten S.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 806
  • [24] Impact of organic matter addition on pH change of paddy soils
    Wang, Yunfeng
    Tang, Caixian
    Wu, Jianjun
    Liu, Xingmei
    Xu, Jianming
    JOURNAL OF SOILS AND SEDIMENTS, 2013, 13 (01) : 12 - 23
  • [25] Impact of organic matter addition on pH change of paddy soils
    Yunfeng Wang
    Caixian Tang
    Jianjun Wu
    Xingmei Liu
    Jianming Xu
    Journal of Soils and Sediments, 2013, 13 : 12 - 23
  • [26] Decomposition of tropical peat soils .1. Decomposition kinetics of organic matter of peat soils
    Murayama, S
    AbuBakar, Z
    JARQ-JAPAN AGRICULTURAL RESEARCH QUARTERLY, 1996, 30 (03): : 145 - 151
  • [27] Influence of soil acidity upon the decomposition of organic matter in soils
    White, JW
    Holben, FJ
    Jeffries, CD
    SOIL SCIENCE, 1934, 37 (01) : 1 - 14
  • [28] Litter decomposition and organic matter turnover in northern forest soils
    Berg, B
    FOREST ECOLOGY AND MANAGEMENT, 2000, 133 (1-2) : 13 - 22
  • [29] Nitrogen addition changes grassland soil organic matter decomposition
    Charlotte E. Riggs
    Sarah E. Hobbie
    Elizabeth M. Bach
    Kirsten S. Hofmockel
    Clare E. Kazanski
    Biogeochemistry, 2015, 125 : 203 - 219
  • [30] Nitrogen addition changes grassland soil organic matter decomposition
    Riggs, Charlotte E.
    Hobbie, Sarah E.
    Bach, Elizabeth M.
    Hofmockel, Kirsten S.
    Kazanski, Clare E.
    BIOGEOCHEMISTRY, 2015, 125 (02) : 203 - 219