Application of the UPRE method to optimal parameter selection for large scale regularization problems

被引:8
|
作者
Lin, Youzuo [1 ]
Wohlberg, Brendt [2 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Los Alamos Natl Lab, Math Modeling & Anal, Los Alamos, NM 87545 USA
关键词
parameter selection; large scale problem; inverse problem; Tikhonov regularization; total variation regularization;
D O I
10.1109/SSIAI.2008.4512292
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter. Applying the traditional UPRE is impractical, however, in the case of inverse problems such as deblurring, due to the large scale of the associated linear problem. We propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.
引用
收藏
页码:89 / +
页数:2
相关论文
共 50 条
  • [1] UPRE method for total variation parameter selection
    Lin, Youzuo
    Wohlberg, Brendt
    Guo, Hongbin
    SIGNAL PROCESSING, 2010, 90 (08) : 2546 - 2551
  • [2] On learning the optimal regularization parameter in inverse problems
    Chirinos-Rodriguez, Jonathan
    De Vito, Ernesto
    Molinari, Cesare
    Rosasco, Lorenzo
    Villa, Silvia
    INVERSE PROBLEMS, 2024, 40 (12)
  • [3] Minimum Residual Method based Optimal Selection of Regularization Parameter in Image Restoration
    Swamy, Yamuna Narayana
    Yalavarthy, Phaneendra K.
    2016 INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (ICONSIP), 2016,
  • [4] Optimal selection of regularization parameter in magnetotelluric data inversion
    Aref Zainalpour
    Gholamreza Kamali
    Ali Moradzadeh
    Acta Geodaetica et Geophysica, 2022, 57 : 245 - 263
  • [5] Optimal selection of regularization parameter in magnetotelluric data inversion
    Zainalpour, Aref
    Kamali, Gholamreza
    Moradzadeh, Ali
    ACTA GEODAETICA ET GEOPHYSICA, 2022, 57 (02) : 245 - 263
  • [6] Numerical method to estimate the optimal regularization parameter
    Kitagawa, Takashi
    Journal of information processing, 1988, 11 (04) : 263 - 270
  • [7] Application of TOPSIS in the Taguchi Method for Optimal Machining Parameter Selection
    Singh, Ankita
    Datta, Saurav
    Mahapatra, Siba Sankar
    JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION, 2011, 11 (1-3) : 49 - 60
  • [8] Totally Asynchronous Large-Scale Quadratic Programming: Regularization, Convergence Rates, and Parameter Selection
    Ubl, Matthew
    Hale, Matthew
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (03): : 1465 - 1476
  • [9] Totally Asynchronous Large-Scale Quadratic Programming: Regularization, Convergence Rates, and Parameter Selection
    Ubl, Matthew
    Hale, Matthew T.
    IEEE Transactions on Control of Network Systems, 2021, 8 (03): : 1465 - 1476
  • [10] Generalized Tikhonov regularization method for large-scale linear inverse problems
    Zhang, Di
    Huang, Ting-Zhu
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (07) : 1317 - 1331