Classification of Ear Imagery Database using Bayesian Optimization based on CNN-LSTM Architecture

被引:8
|
作者
Mohammed, Kamel K. [1 ,4 ]
Hassanien, Aboul Ella [2 ,4 ]
Afify, Heba M. [3 ,4 ]
机构
[1] Al Azhar Univ, Ctr Virus Res & Studies, Cairo, Egypt
[2] Cairo Univ, Fac Comp & Informat, Giza, Egypt
[3] Higher Inst Engn Shorouk Acad, Syst & Biomed Engn Dept, Cairo, Egypt
[4] Sci Res Grp Egypt SRGE, Cairo, Egypt
关键词
Ear imagery database; Convolutional neural networks (CNN); Hyperparameters; Bayesian Optimization; Long short-term memory (LSTM); OTITIS-MEDIA DIAGNOSIS; PEDIATRICIANS; MANAGEMENT; ACCURACY;
D O I
10.1007/s10278-022-00617-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The external and middle ear conditions are diagnosed using a digital otoscope. The clinical diagnosis of ear conditions is suffered from restricted accuracy due to the increased dependency on otolaryngologist expertise, patient complaint, blurring of the otoscopic images, and complexity of lesions definition. There is a high requirement for improved diagnosis algorithms based on otoscopic image processing. This paper presented an ear diagnosis approach based on a convolutional neural network (CNN) as feature extraction and long short-term memory (LSTM) as a classifier algorithm. However, the suggested LSTM model accuracy may be decreased by the omission of a hyperparameter tuning process. Therefore, Bayesian optimization is used for selecting the hyperparameters to improve the results of the LSTM network to obtain a good classification. This study is based on an ear imagery database that consists of four categories: normal, myringosclerosis, earwax plug, and chronic otitis media (COM). This study used 880 otoscopic images divided into 792 training images and 88 testing images to evaluate the approach performance. In this paper, the evaluation metrics of ear condition classification are based on a percentage of accuracy, sensitivity, specificity, and positive predictive value (PPV). The findings yielded a classification accuracy of 100%, a sensitivity of 100%, a specificity of 100%, and a PPV of 100% for the testing database. Finally, the proposed approach shows how to find the best hyperparameters concerning the Bayesian optimization for reliable diagnosis of ear conditions under the consideration of LSTM architecture. This approach demonstrates that CNN-LSTM has higher performance and lower training time than CNN, which has not been used in previous studies for classifying ear diseases. Consequently, the usefulness and reliability of the proposed approach will create an automatic tool for improving the classification and prediction of various ear pathologies.
引用
收藏
页码:947 / 961
页数:15
相关论文
共 50 条
  • [41] Facial Expression Recognition Based on CNN-LSTM
    Liu, Anping
    Yue, Hongjie
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 486 - 491
  • [42] A 2D CNN-LSTM hybrid algorithm using time series segments of EEG data for motor imagery classification
    Wang, Jialing
    Cheng, Shiwei
    Tian, Jieming
    Gao, Yuefan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 83
  • [43] Exploiting Multiple Receivers for CSI-Based Activity Classification Using A Hybrid CNN-LSTM Model
    PROCEEDINGS OF THE 1ST ACMWORKSHOP ON DEVICE-FREE HUMAN SENSING (DFHS 19), 2019, : 18 - 21
  • [44] ?-OTDR pattern recognition based on CNN-LSTM
    Wang, Ming
    Feng, Hao
    Qi, Dunzhe
    Du, Lipu
    Sha, Zhou
    OPTIK, 2023, 272
  • [45] CNN-LSTM based Approach for DDoS Detection
    Alasmari, Tahani
    Eshmawi, Ala'
    Alshomrani, Adel
    Hsairi, Lobna
    2023 EIGHTH INTERNATIONAL CONFERENCE ON MOBILE AND SECURE SERVICES, MOBISECSERV, 2023,
  • [46] Prediction of Protein Interactions Based on Cnn-Lstm
    Wang, Jihong
    Wang, Xiaodan
    Wu, Junwei
    2022 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS (ICCBB 2022), 2022, : 7 - 12
  • [47] Combining Word Order and CNN-LSTM for Sentence Sentiment Classification
    Shuang, Kai
    Ren, Xintao
    Chen, Jian
    Shan, Xiaohan
    Xu, Peng
    2017 INTERNATIONAL CONFERENCE ON SOFTWARE AND E-BUSINESS (ICSEB 2017), 2015, : 17 - 21
  • [48] A hybrid CNN-LSTM model for pre-miRNA classification
    Abdulkadir Tasdelen
    Baha Sen
    Scientific Reports, 11
  • [49] A hybrid CNN-LSTM model for pre-miRNA classification
    Tasdelen, Abdulkadir
    Sen, Baha
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [50] Video-based infant monitoring using a CNN-LSTM scheme
    Min, Lan
    Sun, Yue
    de With, Peter H. N.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597