MIMO Radar Target Localization via Markov Chain Monte Carlo Optimization

被引:0
|
作者
Liang, Junli [1 ]
Chen, Yajun [2 ]
Ye, Zhonghua [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[2] Xian Univ Technol, Fac Printing Package Engn & Digital Media, Xian, Peoples R China
[3] Xian Univ Finance & Econ, Sch Stat, Xian, Peoples R China
[4] Xian Univ Technol, Sch Automat & Informat, Xian, Peoples R China
关键词
Target localization; multiple-input multiple-output (MIMO) radar; nonlinear optimization; Bayesian; Markov Chain Monte Carlo (MCMC); Gibbs sampling; ANTENNAS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the problem of target localization in distributed multiple-input multiple-output (MIMO) radar, where the range measurements are the sum of transmitter-to-target and target-to-receiver distances. To determine the target position, this paper presents a Bayesian approach, in which a Bayesian model is derived for the noisy range measurements and thus the posterior distribution of the unknown target position parameters is defined. However, this complicated distribution is unhelpful for sampling directly. To solve it, this paper applies the Markov Chain Monte Carlo (MCMC) method to estimate the corresponding posterior distribution and draws samples via Gibbs sampling. The performance of the developed algorithm is demonstrated via computer simulation.
引用
收藏
页码:2158 / 2162
页数:5
相关论文
共 50 条
  • [21] Recognizing chromospheric objects via Markov chain Monte Carlo
    Turmon, MJ
    Mukhtar, S
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL III, 1997, : 320 - 323
  • [22] Markov chain Monte Carlo methods for tracking a maneuvering target in clutter
    Logothetis, Andrew
    Doucet, Arnaud
    Proceedings of the IEEE Conference on Decision and Control, 1998, 1 : 754 - 759
  • [23] Markov chain Monte Carlo methods for tracking a maneuvering target in clutter
    Logothetis, A
    Doucet, A
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 754 - 759
  • [24] Approaching MIMO Capacity Using Bitwise Markov Chain Monte Carlo Detection
    Chen, Rong-Rong
    Peng, Ronghui
    Ashikhmin, Alexei
    Farhang-Boroujeny, Behrouz
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (02) : 423 - 428
  • [25] AN IMPROVED MARKOV CHAIN MONTE CARLO METHOD FOR MIMO ITERATIVE DETECTION AND DECODING
    Han Xiang Wei Jibo (Dept of Electronic Science and Engineering
    Journal of Electronics(China), 2008, (03) : 305 - 310
  • [26] Constrained bearings-only target motion analysis via Markov chain Monte Carlo methods
    Bavencoff, Frederic
    Vanpeperstraete, Jean-Michel
    Le Cadre, J. -Pierre
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (04) : 1240 - 1263
  • [27] Markov Chain Monte Carlo Combined with Deterministic Methods for Markov Random Field Optimization
    Kim, Wonsik
    Lee, Kyoung Mu
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1406 - 1413
  • [28] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [29] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [30] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    Machine Learning, 2003, 50 : 175 - 196