MIMO Radar Target Localization via Markov Chain Monte Carlo Optimization

被引:0
|
作者
Liang, Junli [1 ]
Chen, Yajun [2 ]
Ye, Zhonghua [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[2] Xian Univ Technol, Fac Printing Package Engn & Digital Media, Xian, Peoples R China
[3] Xian Univ Finance & Econ, Sch Stat, Xian, Peoples R China
[4] Xian Univ Technol, Sch Automat & Informat, Xian, Peoples R China
关键词
Target localization; multiple-input multiple-output (MIMO) radar; nonlinear optimization; Bayesian; Markov Chain Monte Carlo (MCMC); Gibbs sampling; ANTENNAS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the problem of target localization in distributed multiple-input multiple-output (MIMO) radar, where the range measurements are the sum of transmitter-to-target and target-to-receiver distances. To determine the target position, this paper presents a Bayesian approach, in which a Bayesian model is derived for the noisy range measurements and thus the posterior distribution of the unknown target position parameters is defined. However, this complicated distribution is unhelpful for sampling directly. To solve it, this paper applies the Markov Chain Monte Carlo (MCMC) method to estimate the corresponding posterior distribution and draws samples via Gibbs sampling. The performance of the developed algorithm is demonstrated via computer simulation.
引用
收藏
页码:2158 / 2162
页数:5
相关论文
共 50 条
  • [11] Markov Chain Monte Carlo: Applications to MIMO detection and channel equalization
    Chen, Rong-Rong
    Peng, Ronghui
    Farhang-Boroujeny, Behrouz
    2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 41 - 46
  • [12] Implementation of a Markov Chain Monte Carlo Based Multiuser/MIMO Detector
    Laraway, Stephen Andrew
    Farhang-Boroujeny, Behrouz
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (01) : 246 - 255
  • [13] Implementation of a Markov Chain Monte Carlo Based Multiuser/MIMO Detector
    Laraway, Stephen Andrew
    Farhang-Boroujeny, Behrouz
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 3088 - 3093
  • [14] Stochastic MIMO Detector Based on the Markov Chain Monte Carlo Algorithm
    Chen, Jienan
    Hu, Jianhao
    Sobelman, Gerald E.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1454 - 1463
  • [15] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [16] Discrete optimization, SPSA and Markov Chain Monte Carlo methods
    Gerencsér, L
    Hill, SD
    Vágó, Z
    Vincze, Z
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 3814 - 3819
  • [17] Discrete optimization, SPSA and Markov Chain Monte Carlo methods
    Gerencsér, L
    Hill, SD
    Vágo, Z
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2346 - 2347
  • [18] Parallel Markov Chain Monte Carlo via Spectral Clustering
    Basse, Guillaume
    Pillai, Natesh
    Smith, Aaron
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1318 - 1327
  • [19] Lossy source coding via Markov chain Monte Carlo
    Jalali, Shirin
    Weissman, Tsachy
    2008 INTERNATIONAL ZURICH SEMINAR ON COMMUNICATIONS, 2008, : 80 - 83
  • [20] Rate-Distortion via Markov Chain Monte Carlo
    Jalali, Shirin
    Weissman, Tsachy
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 852 - 856