MIMO Radar Target Localization via Markov Chain Monte Carlo Optimization

被引:0
|
作者
Liang, Junli [1 ]
Chen, Yajun [2 ]
Ye, Zhonghua [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[2] Xian Univ Technol, Fac Printing Package Engn & Digital Media, Xian, Peoples R China
[3] Xian Univ Finance & Econ, Sch Stat, Xian, Peoples R China
[4] Xian Univ Technol, Sch Automat & Informat, Xian, Peoples R China
关键词
Target localization; multiple-input multiple-output (MIMO) radar; nonlinear optimization; Bayesian; Markov Chain Monte Carlo (MCMC); Gibbs sampling; ANTENNAS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the problem of target localization in distributed multiple-input multiple-output (MIMO) radar, where the range measurements are the sum of transmitter-to-target and target-to-receiver distances. To determine the target position, this paper presents a Bayesian approach, in which a Bayesian model is derived for the noisy range measurements and thus the posterior distribution of the unknown target position parameters is defined. However, this complicated distribution is unhelpful for sampling directly. To solve it, this paper applies the Markov Chain Monte Carlo (MCMC) method to estimate the corresponding posterior distribution and draws samples via Gibbs sampling. The performance of the developed algorithm is demonstrated via computer simulation.
引用
收藏
页码:2158 / 2162
页数:5
相关论文
共 50 条
  • [1] Robust MIMO radar target localization via nonconvex optimization
    Liang, Junli
    Wang, Dong
    Su, Li
    Chen, Badong
    Chen, H.
    So, H. C.
    SIGNAL PROCESSING, 2016, 122 : 33 - 38
  • [2] MIMO detection employing Markov Chain Monte Carlo
    Sundaram, V.
    Murthy, K. P. N.
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 1518 - +
  • [3] ENHANCED MIXTURE POPULATION MONTE CARLO VIA STOCHASTIC OPTIMIZATION AND MARKOV CHAIN MONTE CARLO SAMPLING
    El-Laham, Yousef
    Djuric, Petar M.
    Bugallo, Monica F.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5475 - 5479
  • [4] Estimation via Markov chain Monte Carlo
    Spall, JC
    IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [5] Estimation via Markov chain Monte Carlo
    Spall, JC
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [6] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [7] Unbiased Markov chain Monte Carlo for intractable target distributions
    Middleton, Lawrence
    Deligiannidis, George
    Doucet, Arnaud
    Jacob, Pierre E.
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 2842 - 2891
  • [8] Markov chain Monte Carlo data association for target tracking
    Bergman, N
    Doucet, A
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 705 - 708
  • [9] Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems
    Farhang-Boroujeny, B
    Zhu, HD
    Shi, ZN
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (05) : 1896 - 1909
  • [10] Gradient-Based Markov Chain Monte Carlo for MIMO Detection
    Zhou, Xingyu
    Liang, Le
    Zhang, Jing
    Wen, Chao-Kai
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7566 - 7581