Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0

被引:4
|
作者
Marlewski, A
Zarzycki, P
机构
[1] Univ Gdansk, Dept Math, PL-80952 Gdansk, Poland
[2] Poznan Univ Tech, Inst Math, PL-60965 Poznan, Poland
关键词
diophantine equations; computer algebra system; pell equation;
D O I
10.1016/S0898-1221(04)90010-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the equation x(2) - kxy+y(2) + x = 0 with k is an element of N+ has an infinite number of positive integer solutions x and y if and only if k = 3. For k = 3 the quotient x/y is asymptotically equal to (3 + root5)/2 or (3 - root5)/2. Results of the paper are based on data obtained via Computer Algebra System (DERIVE 5). Some DERIVE procedures presented in the paper made it possible to discover interesting regularities concerning simple continued fractions of certain numbers. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [1] On the Diophantine equation x 2 - kxy plus y 2 + lx=0
    Hu, Yongzhong
    Le, Maohua
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (05) : 715 - 718
  • [2] On the Diophantine Equation x2-kxy+y2+lx=0
    Yongzhong HU
    Maohua LE
    Chinese Annals of Mathematics(Series B), 2013, 34 (05) : 715 - 718
  • [3] ON THE DIOPHANTINE EQUATION x2-kxy+y2+2n=0
    Keskin, Refik
    Karaatli, Olcay
    Siar, Zafer
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 375 - 388
  • [4] On the Diophantine equation x2 − kxy + y2 + lx = 0
    Yongzhong Hu
    Maohua Le
    Chinese Annals of Mathematics, Series B, 2013, 34 : 715 - 718
  • [5] On the Diophantine equation x2 − kxy + y2 − 2n = 0
    Refik Keskin
    Zafer Şiar
    Olcay Karaatli
    Czechoslovak Mathematical Journal, 2013, 63 : 783 - 797
  • [6] On the Diophantine equation x2 - kxy plus y2-2n=0
    Keskin, Refik
    Siar, Zafer
    Karaatli, Olcay
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 783 - 797
  • [7] A Generalized Fibonacci Sequence and the Diophantine Equations x(2) +/- kxy - y(2) +/- x = 0
    Bahramian, Mojtaba
    Daghigh, Hassan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2013, 8 (02): : 111 - 121
  • [8] On the Diophantine equation x2 - kxy + y2 + lx=0, l ∈ {1,2,4}
    Yuan, Pingzhi
    Hu, Yongzhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 573 - 577
  • [9] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [10] On primitive solutions of the Diophantine equation x y M 2+=2
    Busenhart, Chris
    Halbeisen, Lorenz
    Hungerbuehler, Norbert
    Riesen, Oliver
    OPEN MATHEMATICS, 2021, 19 (01): : 863 - 868