Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0

被引:4
|
作者
Marlewski, A
Zarzycki, P
机构
[1] Univ Gdansk, Dept Math, PL-80952 Gdansk, Poland
[2] Poznan Univ Tech, Inst Math, PL-60965 Poznan, Poland
关键词
diophantine equations; computer algebra system; pell equation;
D O I
10.1016/S0898-1221(04)90010-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the equation x(2) - kxy+y(2) + x = 0 with k is an element of N+ has an infinite number of positive integer solutions x and y if and only if k = 3. For k = 3 the quotient x/y is asymptotically equal to (3 + root5)/2 or (3 - root5)/2. Results of the paper are based on data obtained via Computer Algebra System (DERIVE 5). Some DERIVE procedures presented in the paper made it possible to discover interesting regularities concerning simple continued fractions of certain numbers. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [31] On the positive integral solutions of the Diophantine equation x3+by+1−xyz=0
    S. Subburam
    The Ramanujan Journal, 2013, 32 : 203 - 219
  • [32] ON THE DIOPHANTINE EQUATION x(2)+2(a) . 11(b) = y(n)
    Cangul, Ismail Naci
    Demirci, Musa
    Luca, Florian
    Pinter, Akos
    Soydan, Gokhan
    FIBONACCI QUARTERLY, 2010, 48 (01): : 39 - 46
  • [33] SOLUTIONS OF THE DIFFERENTIAL-EQUATION X(2)Y''=(X(3)+A(2)X(2)+A(1)X+A(0))Y USING THE KOVACIC ALGORITHM
    PONS, R
    MARCILHACY, G
    BULLETIN DES SCIENCES MATHEMATIQUES, 1995, 119 (03): : 289 - 297
  • [34] On the Diophantine Equation x(2)
    Yow, K. S.
    Sapar, S. H.
    Atan, K. A.
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2013, 21 (02): : 443 - 457
  • [35] ON THE DIOPHANTINE EQUATION 2(x)
    Rabago, Julius Fergy T.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2016, 22 (02) : 177 - 181
  • [36] A note on a theorem of Ljunggren and the Diophantine equations x2-kxy2+y4=1,4
    Walsh, G
    ARCHIV DER MATHEMATIK, 1999, 73 (02) : 119 - 125
  • [37] ON THE DIOPHANTINE EQUATION x(2)
    Cangul, Ismail Naci
    Demirci, Musa
    Soydan, Gokhan
    Tzanakis, Nikos
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 43 (02) : 209 - 225
  • [38] The Polynomial Solutions of Quadratic Diophantine Equation X2 - p(t)Y2+2K(t)X+2p(t)L(t)Y=0
    Sankari, Hasan
    Abdo, Ahmad
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [39] Infinitely many solutions for a p(x)-Laplacian equation in RN
    Dai, Guowei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 1133 - 1139
  • [40] Studies of Positive Integer Solutions of the Diophantine Equation x2-ay2-bx-cy-d=0 by the Transformation Method
    Fenolahy, Francklin
    Ramanantsoa, Harrimann
    Totohasina, Andre
    JOURNAL OF MATHEMATICS, 2024, 2024