ON THE DIOPHANTINE EQUATION x2-kxy+y2+2n=0

被引:3
|
作者
Keskin, Refik [1 ]
Karaatli, Olcay [1 ]
Siar, Zafer [1 ]
机构
[1] Sakarya Univ, Fac Arts & Sci, TR-54187 Sakarya, Turkey
关键词
Diophantine equations; Pell equations; generalized Fibonacci and Lucas numbers;
D O I
10.18514/MMN.2012.433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine when the equation in the title has an infinite number of positive integer solutions x and y when 0 <= n <= 10. Moreover, we give all the positive integer solutions of the same equation for 0 <= n <= 10.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [1] On the Diophantine equation x2 − kxy + y2 − 2n = 0
    Refik Keskin
    Zafer Şiar
    Olcay Karaatli
    Czechoslovak Mathematical Journal, 2013, 63 : 783 - 797
  • [2] On the Diophantine equation x 2 - kxy plus y 2 + lx=0
    Hu, Yongzhong
    Le, Maohua
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (05) : 715 - 718
  • [3] On the Diophantine Equation x2-kxy+y2+lx=0
    Yongzhong HU
    Maohua LE
    Chinese Annals of Mathematics(Series B), 2013, 34 (05) : 715 - 718
  • [4] On the Diophantine equation x2 - kxy plus y2-2n=0
    Keskin, Refik
    Siar, Zafer
    Karaatli, Olcay
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 783 - 797
  • [5] On the Diophantine equation x2 − kxy + y2 + lx = 0
    Yongzhong Hu
    Maohua Le
    Chinese Annals of Mathematics, Series B, 2013, 34 : 715 - 718
  • [6] Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0
    Marlewski, A
    Zarzycki, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (01) : 115 - 121
  • [7] A Generalized Fibonacci Sequence and the Diophantine Equations x(2) +/- kxy - y(2) +/- x = 0
    Bahramian, Mojtaba
    Daghigh, Hassan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2013, 8 (02): : 111 - 121
  • [8] On the Diophantine equation x2 - kxy + y2 + lx=0, l ∈ {1,2,4}
    Yuan, Pingzhi
    Hu, Yongzhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 573 - 577
  • [9] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [10] Diophantine equation x(2)+2(m)=y(n)
    Le, MH
    CHINESE SCIENCE BULLETIN, 1997, 42 (18): : 1515 - 1517