ON THE DIOPHANTINE EQUATION x2-kxy+y2+2n=0

被引:3
|
作者
Keskin, Refik [1 ]
Karaatli, Olcay [1 ]
Siar, Zafer [1 ]
机构
[1] Sakarya Univ, Fac Arts & Sci, TR-54187 Sakarya, Turkey
关键词
Diophantine equations; Pell equations; generalized Fibonacci and Lucas numbers;
D O I
10.18514/MMN.2012.433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine when the equation in the title has an infinite number of positive integer solutions x and y when 0 <= n <= 10. Moreover, we give all the positive integer solutions of the same equation for 0 <= n <= 10.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [31] A note on the diophantine equation D(1)x(2)+D-2=2y(n)
    Le, MH
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 51 (1-2): : 191 - 198
  • [32] ON THE DIOPHANTINE EQUATION 2(x) = x(2)
    Gica, Alexandru
    Luca, Florian
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (01) : 109 - 116
  • [33] On the Diophantine equation z2 = f(x)2 ± f(y)2
    Ulas, Maciej
    Togbe, Alain
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (1-2): : 183 - 201
  • [34] DIOPHANTINE EQUATION X2+Y2+Z2=M2
    SPIRA, R
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (05): : 360 - &
  • [35] ON THE EXPONENTIAL DIOPHANTINE EQUATION (n-1)x + (n+2)y = nz
    Bai, Hairong
    Kizildere, Elif
    Soydan, Gokhan
    Yuan, Pingzhi
    COLLOQUIUM MATHEMATICUM, 2020, 161 (02) : 239 - 249
  • [37] On primitive solutions of the Diophantine equation x y M 2+=2
    Busenhart, Chris
    Halbeisen, Lorenz
    Hungerbuehler, Norbert
    Riesen, Oliver
    OPEN MATHEMATICS, 2021, 19 (01): : 863 - 868
  • [38] The Diophantine equation X2-db2Y4=1
    Walsh, G
    ACTA ARITHMETICA, 1998, 87 (02) : 179 - 188
  • [39] On the diophantine equation x2 − Dy2 = n
    DaSheng Wei
    Science China Mathematics, 2013, 56 : 227 - 238
  • [40] THE DIOPHANTINE EQUATION X2+7=2N
    JOHNSON, W
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (01): : 59 - 62