ON THE DIOPHANTINE EQUATION 2(x) = x(2)

被引:0
|
作者
Gica, Alexandru [1 ]
Luca, Florian [2 ]
机构
[1] Univ Bucharest, Dept Math, Str Acad Nr 14,Sect 1, Bucharest 010014, Romania
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
关键词
diophantine equations; applications of Baker's method;
D O I
10.7169/facm/2012.46.1.8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the only positive integer solutions of the equation 2(x) = x(2) + y(2) - 2 are ( x, y) = ( 3, 1), ( 5, 3), ( 7, 9). We propose also the following conjecture: the equation 2(x) =y(2) + z(2) (x(2) - 2) , where y, z are odd positive integers and x is a positive integer such that x(2) - 2 is a prime number, has the only solutions ( x, y, z) = ( 3, 1, 1), ( 5, 3, 1), ( 7, 9, 1), ( 1 3, 3, 7). The conjecture implies a recent result of Lee [ 4] which states that if x 2 - 2 is an odd prime number such that the class number h(x(2) - 2) of the quadratic field Q[`root x(2) - 2] is 1, then x = 3, 5, 7, 13.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 50 条
  • [1] On the Diophantine Equation x(2)
    Yow, K. S.
    Sapar, S. H.
    Atan, K. A.
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2013, 21 (02): : 443 - 457
  • [2] ON THE DIOPHANTINE EQUATION 2(x)
    Rabago, Julius Fergy T.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2016, 22 (02) : 177 - 181
  • [3] ON THE DIOPHANTINE EQUATION x(2)
    Cangul, Ismail Naci
    Demirci, Musa
    Soydan, Gokhan
    Tzanakis, Nikos
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2010, 43 (02) : 209 - 225
  • [4] ON THE DIOPHANTINE EQUATION x2
    Alan, Murat
    Aydin, Mustafa
    ARCHIVUM MATHEMATICUM, 2023, 59 (05): : 411 - 420
  • [5] The Diophantine equation x2
    Nguyen Xuan Tho
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 121 - 139
  • [6] DIOPHANTINE EQUATION 1+X+X2+...+X2BETA=PALPHA
    EDGAR, HM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 535 - &
  • [7] On the diophantine equation x2 + 2 = yn
    Sury B.
    Archiv der Mathematik, 2000, 74 (5) : 350 - 355
  • [8] On the Diophantine equation x2+2=yn
    Sury, R
    ARCHIV DER MATHEMATIK, 2000, 74 (05) : 350 - 355
  • [9] An Exponential Diophantine Equation x2
    Muthuvel, S.
    Venkatraman, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1125 - 1128
  • [10] DIOPHANTINE EQUATION X2-MY2=-2
    BARKAN, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (21): : 1215 - 1218