ON THE DIOPHANTINE EQUATION 2(x) = x(2)

被引:0
|
作者
Gica, Alexandru [1 ]
Luca, Florian [2 ]
机构
[1] Univ Bucharest, Dept Math, Str Acad Nr 14,Sect 1, Bucharest 010014, Romania
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
关键词
diophantine equations; applications of Baker's method;
D O I
10.7169/facm/2012.46.1.8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the only positive integer solutions of the equation 2(x) = x(2) + y(2) - 2 are ( x, y) = ( 3, 1), ( 5, 3), ( 7, 9). We propose also the following conjecture: the equation 2(x) =y(2) + z(2) (x(2) - 2) , where y, z are odd positive integers and x is a positive integer such that x(2) - 2 is a prime number, has the only solutions ( x, y, z) = ( 3, 1, 1), ( 5, 3, 1), ( 7, 9, 1), ( 1 3, 3, 7). The conjecture implies a recent result of Lee [ 4] which states that if x 2 - 2 is an odd prime number such that the class number h(x(2) - 2) of the quadratic field Q[`root x(2) - 2] is 1, then x = 3, 5, 7, 13.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 50 条
  • [41] On the Diophantine equation x2+7=ym
    Siksek, S
    Cremona, JE
    ACTA ARITHMETICA, 2003, 109 (02) : 143 - 149
  • [42] A note on the diophantine equation x2 + by = cz
    Maohua Le
    Czechoslovak Mathematical Journal, 2006, 56 : 1109 - 1116
  • [43] Solving the Diophantine equation y2 = x(x2 - n2)
    Draziotis, Konstantinos
    Poulakis, Dimitrios
    JOURNAL OF NUMBER THEORY, 2009, 129 (01) : 102 - 121
  • [44] On the diophantine equation (x(x-1)/2)(2)=y(y-1)/2
    Luo, M
    FIBONACCI QUARTERLY, 1996, 34 (03): : 277 - 279
  • [45] ON THE DIOPHANTINE EQUATION 6y~2=(x+1)(x~2-x+6)
    罗明
    Science Bulletin, 1987, (21) : 1510 - 1511
  • [46] The diophantine equation x2+q2k=yn
    Abu Muriefah, FS
    Arif, SA
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2001, 26 (1A): : 53 - 62
  • [48] ON THE DIOPHANTINE EQUATION 6Y2=(X+1)(X2-X+6)
    LUO, M
    KEXUE TONGBAO, 1987, 32 (21): : 1510 - 1511
  • [49] ON THE DIOPHANTINE EQUATION 6Y~2=X(X+1)(2X+1)
    马德刚
    Science Bulletin, 1985, (09) : 1266 - 1266
  • [50] On The Diophantine Equation x1a + x2a + ... + xma = pkyb
    Balfaqih, Abdulrahman
    Kamarulhaili, Hailiza
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184