Binomial difference ideals

被引:9
|
作者
Gao, Xiao-Shan [1 ]
Huang, Zhang [1 ]
Yuan, Chun-Ming [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, UCAS, Beijing 100190, Peoples R China
关键词
Laurent binomial difference ideal; Binomial difference ideal; Z[x]-lattice; Difference characteristic set; Grobner basis of Z[x]-module; Generalized Hermite normal form; DECOMPOSITION; SYSTEMS;
D O I
10.1016/j.jsc.2016.07.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, binomial difference ideals are studied. Three canonical representations for Laurent binomial difference ideals are given in terms of the reduced Grobner basis of Z[x]-lattices, regular and coherent difference ascending chains, and partial characters on Z[x]-lattices, respectively. Criteria for a Laurent binomial difference ideal to be reflexive, prime, well-mixed, and perfect are given in terms of their support lattices. The reflexive, well-mixed, and perfect closures of a Laurent binomial difference ideal are shown to be binomial. Most of the properties of Laurent binomial difference ideals are extended to the case of binomial difference ideals. Finally, algorithms are given to check whether a given Laurent binomial difference ideal 2 is reflexive, prime, well-mixed, or perfect, and in the negative case, to compute the reflexive, well-mixed, and perfect closures of I. An algorithm is given to decompose a finitely generated perfect binomial difference ideal as the intersection of reflexive prime binomial difference ideals. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 706
页数:42
相关论文
共 50 条
  • [31] A Saturation Algorithm for Homogeneous Binomial Ideals
    Kesh, Deepanjan
    Mehta, Shashank K.
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 357 - 371
  • [32] SOME RESULTS ON SPECIAL BINOMIAL IDEALS
    Marino, Lucia
    MATEMATICHE, 2006, 61 (01): : 85 - 107
  • [33] On the Depth of Generalized Binomial Edge Ideals
    Anuvinda, J.
    Mehta, Ranjana
    Saha, Kamalesh
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (05)
  • [34] Binomial edge ideals of bipartite graphs
    Bolognini, Davide
    Macchia, Antonio
    Strazzanti, Francesco
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 1 - 25
  • [35] CRITICAL BINOMIAL IDEALS OF NORTHCOTT TYPE
    Garcia-Sanchez, P. A.
    Llena, D.
    Ojeda, I.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (01) : 48 - 70
  • [36] Binomial edge ideals of small depth
    Malayeri, Mohammad Rouzbahani
    Madani, Sara Saeedi
    Kiani, Dariush
    JOURNAL OF ALGEBRA, 2021, 572 : 231 - 244
  • [37] On the binomial edge ideals of block graphs
    Chaudhry, Faryal
    Dokuyucu, Ahmet
    Irfan, Rida
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (02): : 149 - 158
  • [38] Binomial edge ideals and bounds for their regularity
    Kumar, Arvind
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 729 - 742
  • [39] COMPLETE INTERSECTIONS IN BINOMIAL AND LATTICE IDEALS
    Lopez, Hiram H.
    Villarreal, Rafael H.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (06) : 1419 - 1429
  • [40] Binomial edge ideals and bounds for their regularity
    Arvind kumar
    Journal of Algebraic Combinatorics, 2021, 53 : 729 - 742