Binomial difference ideals

被引:9
|
作者
Gao, Xiao-Shan [1 ]
Huang, Zhang [1 ]
Yuan, Chun-Ming [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, UCAS, Beijing 100190, Peoples R China
关键词
Laurent binomial difference ideal; Binomial difference ideal; Z[x]-lattice; Difference characteristic set; Grobner basis of Z[x]-module; Generalized Hermite normal form; DECOMPOSITION; SYSTEMS;
D O I
10.1016/j.jsc.2016.07.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, binomial difference ideals are studied. Three canonical representations for Laurent binomial difference ideals are given in terms of the reduced Grobner basis of Z[x]-lattices, regular and coherent difference ascending chains, and partial characters on Z[x]-lattices, respectively. Criteria for a Laurent binomial difference ideal to be reflexive, prime, well-mixed, and perfect are given in terms of their support lattices. The reflexive, well-mixed, and perfect closures of a Laurent binomial difference ideal are shown to be binomial. Most of the properties of Laurent binomial difference ideals are extended to the case of binomial difference ideals. Finally, algorithms are given to check whether a given Laurent binomial difference ideal 2 is reflexive, prime, well-mixed, or perfect, and in the negative case, to compute the reflexive, well-mixed, and perfect closures of I. An algorithm is given to decompose a finitely generated perfect binomial difference ideal as the intersection of reflexive prime binomial difference ideals. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 706
页数:42
相关论文
共 50 条
  • [21] Binomial ideals of domino tilings
    Gross, Elizabeth
    Yamzon, Nicole
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [22] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [23] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [24] Arithmetical rank of binomial ideals
    Katsabekis, Anargyros
    ARCHIV DER MATHEMATIK, 2017, 109 (04) : 323 - 334
  • [25] Irreducible decomposition of binomial ideals
    Kahle, Thomas
    Miller, Ezra
    O'Neill, Christopher
    COMPOSITIO MATHEMATICA, 2016, 152 (06) : 1319 - 1332
  • [26] Binomial Edge Ideals: A Survey
    Madani, Sara Saeedi
    MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 83 - 94
  • [27] Parity binomial edge ideals
    Thomas Kahle
    Camilo Sarmiento
    Tobias Windisch
    Journal of Algebraic Combinatorics, 2016, 44 : 99 - 117
  • [28] Local cohomology of binomial edge ideals and their generic initial ideals
    Josep Àlvarez Montaner
    Collectanea Mathematica, 2020, 71 : 331 - 348
  • [29] Local cohomology of binomial edge ideals and their generic initial ideals
    Alvarez Montaner, Josep
    COLLECTANEA MATHEMATICA, 2020, 71 (02) : 331 - 348
  • [30] REGULARITY BOUNDS FOR BINOMIAL EDGE IDEALS
    Matsuda, Kazunori
    Murai, Satoshi
    JOURNAL OF COMMUTATIVE ALGEBRA, 2013, 5 (01) : 141 - 149