Binomial difference ideals

被引:9
|
作者
Gao, Xiao-Shan [1 ]
Huang, Zhang [1 ]
Yuan, Chun-Ming [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, UCAS, Beijing 100190, Peoples R China
关键词
Laurent binomial difference ideal; Binomial difference ideal; Z[x]-lattice; Difference characteristic set; Grobner basis of Z[x]-module; Generalized Hermite normal form; DECOMPOSITION; SYSTEMS;
D O I
10.1016/j.jsc.2016.07.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, binomial difference ideals are studied. Three canonical representations for Laurent binomial difference ideals are given in terms of the reduced Grobner basis of Z[x]-lattices, regular and coherent difference ascending chains, and partial characters on Z[x]-lattices, respectively. Criteria for a Laurent binomial difference ideal to be reflexive, prime, well-mixed, and perfect are given in terms of their support lattices. The reflexive, well-mixed, and perfect closures of a Laurent binomial difference ideal are shown to be binomial. Most of the properties of Laurent binomial difference ideals are extended to the case of binomial difference ideals. Finally, algorithms are given to check whether a given Laurent binomial difference ideal 2 is reflexive, prime, well-mixed, or perfect, and in the negative case, to compute the reflexive, well-mixed, and perfect closures of I. An algorithm is given to decompose a finitely generated perfect binomial difference ideal as the intersection of reflexive prime binomial difference ideals. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 706
页数:42
相关论文
共 50 条
  • [1] Criteria for Finite Difference Grobner Bases of Normal Binomial Difference Ideals
    Chen, Yu-Ao
    Gao, Xiao-Shan
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 93 - 100
  • [2] Binomial ideals
    Eisenbud, D
    Sturmfels, B
    DUKE MATHEMATICAL JOURNAL, 1996, 84 (01) : 1 - 45
  • [3] Cellular binomial ideals.: Primary decomposition of binomial ideals
    De Castilla, IOM
    Sánchez, RP
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (04) : 383 - 400
  • [4] BINOMIAL CANONICAL DECOMPOSITIONS OF BINOMIAL IDEALS
    Ojeda, Ignacio
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3722 - 3735
  • [5] Decompositions of binomial ideals
    Kahle, Thomas
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (04) : 727 - 745
  • [6] Radicals of binomial ideals
    Becker, E
    Grobe, R
    Niermann, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 117 : 41 - 79
  • [7] Decompositions of binomial ideals
    Thomas Kahle
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 727 - 745
  • [8] Binomial edge ideals of graphs
    Madani, Sara Saeedi
    Kiani, Dariush
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [9] Arithmetical rank of binomial ideals
    Anargyros Katsabekis
    Archiv der Mathematik, 2017, 109 : 323 - 334
  • [10] Gorenstein binomial edge ideals
    Gonzalez-Martinez, Rene
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1889 - 1898