Steiner triple systems of order 19 and 21 with subsystems of order 7

被引:22
|
作者
Kaski, Petteri [1 ]
Ostergard, Patric R. J. [2 ]
Topalova, Svetlana [3 ]
Zlatarski, Rosen [3 ]
机构
[1] Helsinki Univ Technol, Lab Theoret Comp Sci, FIN-02150 Espoo, Finland
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
[3] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
classification; doubly resolvable design; Steiner triple system; subsystem;
D O I
10.1016/j.disc.2006.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) with subsystems of order 7 are classified. For order 19, this classification is complete, but for order 21 it is restricted to Wilson-type systems, which contain three subsystems of order 7 on disjoint point sets. The classified STSs of order 21 are tested for resolvability; none of them is doubly resolvable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2732 / 2741
页数:10
相关论文
共 50 条
  • [1] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [2] The Steiner triple systems of order 19
    Kaski, P
    Östergård, PRJ
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 2075 - 2092
  • [3] STEINER TRIPLE-SYSTEMS OF ORDER-21 WITH AUTOMORPHISMS OF ORDER-7
    TONCHEV, VD
    ARS COMBINATORIA, 1987, 23 : 93 - 96
  • [4] Sparse Steiner triple systems of order 21
    Kokkala, Janne I.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (02) : 75 - 83
  • [5] Properties of Steiner triple systems of order 21
    Erskine, Grahame
    Griggs, Terry S.
    DISCRETE MATHEMATICS, 2024, 347 (11)
  • [6] Properties of the Steiner Triple Systems of Order 19
    Colbourn, Charles J.
    Forbes, Anthony D.
    Grannell, Mike J.
    Griggs, Terry S.
    Kaski, Petteri
    Ostergard, Patric R. J.
    Pike, David A.
    Pottonen, Olli
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [7] Cycle Switching in Steiner Triple Systems of Order 19
    Erskine, Grahame
    Griggs, Terry S.
    JOURNAL OF COMBINATORIAL DESIGNS, 2025, 33 (05) : 195 - 204
  • [8] STEINER TRIPLE-SYSTEMS OF ORDER 21 WITH AUTOMORPHISMS OF ORDER 7 (VOL 23, PG 93, 1987)
    TONCHEV, VD
    ARS COMBINATORIA, 1995, 39 : 3 - 3
  • [10] Method of Construction and Enumeration Steiner Triple Systems with Order 19
    Li, XiaoYi
    Xu, ZhaoDi
    Chou, WanXi
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 1205 - +