Dual formulations of mixed finite element methods with applications

被引:24
|
作者
Gillette, Andrew [1 ]
Bajaj, Chandrajit [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
关键词
Discrete exterior calculus; Finite element method; Partial differential equations; Whitney forms; Hodge star; HODGE THEORY; CONSTRUCTION;
D O I
10.1016/j.cad.2011.06.017
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1213 / 1221
页数:9
相关论文
共 50 条
  • [41] THE EQUIVALENCE OF STANDARD AND MIXED FINITE ELEMENT METHODS IN APPLICATIONS TO ELASTO-ACOUSTIC INTERACTION
    Flemisch, Bernd
    Kaltenbacher, Manfred
    Triebenbacher, Simon
    Wohlmuth, Barbara I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 1980 - 2006
  • [42] Connection between finite volume and mixed finite element methods
    Baranger, J
    Maitre, JF
    Oudin, F
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 445 - 465
  • [43] Three-field mixed finite element formulations for gradient elasticity at finite strains
    Riesselmann J.
    Ketteler J.W.
    Schedensack M.
    Balzani D.
    GAMM Mitteilungen, 2020, 43 (01)
  • [44] A physically nonlinear dual mixed finite element formulation
    Schroder, J
    Klaas, O
    Stein, E
    Miehe, C
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 144 (1-2) : 77 - 92
  • [45] Mixed finite element formulations with volume bubble functions for triangular elements
    Caylak, I.
    Mahnken, R.
    COMPUTERS & STRUCTURES, 2011, 89 (21-22) : 1844 - 1851
  • [46] A consistent approach for mixed stress finite element formulations in linear elastodynamics
    de Miranda, Stefano
    Molari, Luisa
    Ubertini, Francesco
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1376 - 1388
  • [47] Nonlinear mixed finite element formulations for the analysis of planar curved beams
    Dogruoglu, Ali Nuri
    Komurcu, Sedat
    COMPUTERS & STRUCTURES, 2019, 221 : 63 - 81
  • [48] Mixed finite element formulations of strain-gradient elasticity problems
    Amanatidou, E
    Aravas, N
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (15-16) : 1723 - 1751
  • [49] Mixed finite element formulations and related limitation principles: A general treatment
    Alfano, G
    deSciarra, FM
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 138 (1-4) : 105 - 130
  • [50] Analysis of new augmented Lagrangian formulations for mixed finite element schemes
    Daniele Boffi
    Carlo Lovadina
    Numerische Mathematik, 1997, 75 : 405 - 419