Dual formulations of mixed finite element methods with applications

被引:24
|
作者
Gillette, Andrew [1 ]
Bajaj, Chandrajit [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
关键词
Discrete exterior calculus; Finite element method; Partial differential equations; Whitney forms; Hodge star; HODGE THEORY; CONSTRUCTION;
D O I
10.1016/j.cad.2011.06.017
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1213 / 1221
页数:9
相关论文
共 50 条
  • [31] PRIMAL DUAL MIXED FINITE ELEMENT METHODS FOR INDEFINITE ADVECTION-DIFFUSION EQUATIONS
    Burman, Erik
    He, Cuiyu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2785 - 2811
  • [32] Finite Element Methods with Patches and Applications
    Glowinski, Roland
    He, Jiwen
    Lozinski, Alexei
    Picasso, Marco
    Rappaz, Jacques
    Rezzonico, Vittoria
    Wagner, Joël
    Lecture Notes in Computational Science and Engineering, 2007, 55 : 77 - 89
  • [33] Mixed finite element methods for the Rosenau equation
    Atouani, Noureddine
    Ouali, Yousra
    Omrani, Khaled
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 57 (1-2) : 393 - 420
  • [34] Mixed finite element methods for the Rosenau equation
    Noureddine Atouani
    Yousra Ouali
    Khaled Omrani
    Journal of Applied Mathematics and Computing, 2018, 57 : 393 - 420
  • [35] Mixed finite element methods for the Oseen problem
    Mohamed Farhloul
    Numerical Algorithms, 2020, 84 : 1431 - 1442
  • [36] Control‐volume mixed finite element methods
    Z. Cai
    J.E. Jones
    S.F. McCormick
    T.F. Russell
    Computational Geosciences, 1997, 1 (3-4) : 289 - 315
  • [37] Mixed finite element methods for the Oseen problem
    Farhloul, Mohamed
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1431 - 1442
  • [38] DUAL FINITE ELEMENT METHODS FOR NEUTRON DIFFUSION
    SEMENZA, LA
    ROSSOW, EC
    LEWIS, EE
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1971, 14 (02): : 662 - &
  • [39] Iterative schemes for mixed finite element methods with applications to elasticity and compressible flow problems
    Daoqi Yang
    Numerische Mathematik, 2002, 93 (1) : 177 - 200
  • [40] Iterative schemes for mixed finite element methods with applications to elasticity and compressible flow problems
    Yang, DQ
    NUMERISCHE MATHEMATIK, 2002, 93 (01) : 177 - 200