Dual formulations of mixed finite element methods with applications

被引:24
|
作者
Gillette, Andrew [1 ]
Bajaj, Chandrajit [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
关键词
Discrete exterior calculus; Finite element method; Partial differential equations; Whitney forms; Hodge star; HODGE THEORY; CONSTRUCTION;
D O I
10.1016/j.cad.2011.06.017
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1213 / 1221
页数:9
相关论文
共 50 条
  • [1] On Finite Element Formulations for the Obstacle Problem - Mixed and Stabilised Methods
    Gustafsson, Tom
    Stenberg, Rolf
    Videman, Juha
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (03) : 413 - 429
  • [2] MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS AND APPLICATIONS
    Chung, Eric T.
    Efendiev, Yalchin
    Lee, Chak Shing
    MULTISCALE MODELING & SIMULATION, 2015, 13 (01): : 338 - 366
  • [3] Enriched finite element subspaces for dual-dual mixed formulations in fluid mechanics and elasticity
    Bustinza, R
    Gatica, GN
    González, M
    Meddahi, S
    Stephan, EP
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (2-5) : 427 - 439
  • [4] Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics
    Wiesner, T. A.
    Popp, A.
    Gee, M. W.
    Wall, W. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (04) : 399 - 430
  • [5] MODELLING OF AND MIXED FINITE ELEMENT METHODS FOR GELS IN BIOMEDICAL APPLICATIONS
    Rognes, Marie E.
    Calderer, M. -Carme
    Micek, Catherine A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (04) : 1305 - 1329
  • [6] Mixed-enhanced finite element formulations
    Taylor, RL
    Kasper, EP
    TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS, 2001, : 36 - 56
  • [7] A comparison of primal- and dual-mixed finite element formulations for Timoshenko beams
    E. Bertóti
    Engineering with Computers, 2015, 31 : 99 - 111
  • [8] A comparison of primal- and dual-mixed finite element formulations for Timoshenko beams
    Bertoti, E.
    ENGINEERING WITH COMPUTERS, 2015, 31 (01) : 99 - 111
  • [9] Mixed finite element methods
    Duran, Ricardo G.
    MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS, AND APPLICATIONS, 2008, 1939 : 1 - 44
  • [10] Dual mixed finite element methods for the elasticity problem with Lagrange multipliers
    Boulaajine, L.
    Nicaise, S.
    Paquet, L.
    Rafilipojaona
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) : 234 - 260