A mix-pooling CNN architecture with FCRF for brain tumor segmentation

被引:49
|
作者
Chang, Jie [1 ,2 ,3 ]
Zhang, Luming [4 ]
Gu, Naijie [1 ]
Zhang, Xiaoci [1 ]
Ye, Minquan [5 ]
Yin, Rongzhang [5 ]
Meng, Qianqian [6 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230000, Anhui, Peoples R China
[2] Wannan Med Coll, Sch Med Informat, Wuhu 241002, Anhui, Peoples R China
[3] Wannan Med Coll, Res Ctr Hlth Big Data Min & Applicat, Wuhu 241002, Anhui, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci, Hangzhou 310000, Zhejiang, Peoples R China
[5] Wannan Med Coll, Sch Med Informat, Wuhu 241000, Peoples R China
[6] Capital Med Univ, Beijing Tiantan Hosp, Med Engn Dept, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
MR image segmentation; Convolutional Neural Network; Fully CRF; NEURAL-NETWORKS;
D O I
10.1016/j.jvcir.2018.11.047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
MR technique is prevalent for doctor to diagnose and assess glioblastomas which are the most lethal form of brain tumors. Although Convolutional Neural Networks (CNN) has been applied in automatic brain tumor segmentation and is proved useful and efficient, traditional one-pathway CNN architecture with convolutional layers and max pooling layers has limited receptive fields representing the local context information. Such mindset in traditional CNN may dismiss useful global context information. In this paper, we design a two-pathway model with average and max pooling layers in different paths. Besides, 1 x 1 kernels are followed input layers to add the non-linearity dimensions of input data. Finally, we combine the CNN architecture with fully connected CRF(FCRF) as a mixture model to introduce the global context information to optimize prediction results. Our experiments proved that the mixture model improved segmentation and labeling accuracy. (C) 2018 Elsevier Inc, All rights reserved.
引用
收藏
页码:316 / 322
页数:7
相关论文
共 50 条
  • [21] A dual tri-path CNN system for brain tumor segmentation
    Tong, Juncheng
    Wang, Chunyan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [22] ParMamba: A Parallel Architecture Using CNN and Mamba for Brain Tumor Classification
    Su, Gaoshuai
    Li, Hongyang
    Chen, Huafeng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, : 2527 - 2545
  • [23] Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images
    Ozkaraca, Osman
    Bagriacik, Okan Ihsan
    Guruler, Huseyin
    Khan, Faheem
    Hussain, Jamil
    Khan, Jawad
    Umm e Laila
    LIFE-BASEL, 2023, 13 (02):
  • [24] A Deep Learning Architecture for Meningioma Brain Tumor Detection and Segmentation
    Anita, John Nisha
    Kumaran, Sujatha
    JOURNAL OF CANCER PREVENTION, 2022, 27 (03) : 192 - 198
  • [25] A Deep Learning Architecture for Brain Tumor Segmentation in MRI Images
    Shreyas, V.
    Pankajakshan, Vinod
    2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [26] Multimodal Brain Tumor Segmentation Using Modified UNet Architecture
    Singh, Gaurav
    Phophalia, Ashish
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 295 - 305
  • [27] Brain Tumor Segmentation Using a Multi-path CNN Based Method
    Sedlar, Sara
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 403 - 422
  • [28] A U-Net-Based CNN Model for Detection and Segmentation of Brain Tumor
    Ghulam, Rehana
    Fatima, Sammar
    Ali, Tariq
    Zafar, Nazir Ahmad
    Asiri, Abdullah A.
    Alshamrani, Hassan A.
    Alqhtani, Samar M.
    Mehdar, Khlood M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1333 - 1349
  • [29] An Efficient Encoder-Decoder CNN for Brain Tumor Segmentation in MRI Images
    Dheepa, G.
    Chithra, P. L.
    IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8647 - 8658
  • [30] A Brain Tumor Segmentation New Method Based on Statistical Thresholding and Multiscale CNN
    Jiang, Yun
    Hou, Jinquan
    Xiao, Xiao
    Deng, Haili
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 235 - 245