Stochastic algorithms for gene expression analysis

被引:0
|
作者
Ohno-Machado, L [1 ]
Kuo, WP
机构
[1] Harvard Univ, MIT, Decis Syst Grp, Div Hlth Sci & Technol, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Dent Med, Dept Oral Med Infect & Immun, Boston, MA 02115 USA
关键词
gene expression; supervised learning; unsupervised learning; microarrays;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recent advances in the measurement of gene expression have allowed large data sets to become available for different types of analyses. In these data sets, the number of variables exceeds the number of observations by at least one order of magnitude. Substantial variable reduction is usually necessary before learning algorithms can be utilized in practice. Commonly used greedy variable selection strategies preclude the discovery of potentially important variable combinations if the variables in the combination are not sufficiently informative in isolation. Given the high dimensionality, artifacts are frequent and the use of evaluation techniques to prevent model overfitting need to be employed. In this article, we describe the factors that make the analysis of high-throughput gene expression data especially challenging, and indicate why properly evaluated stochastic algorithms can play a particularly important role in this process.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [41] Stochastic Expression of the Interferon-β Gene
    Zhao, Mingwei
    Zhang, Jiangwen
    Phatnani, Hemali
    Scheu, Stefanie
    Maniatis, Tom
    [J]. PLOS BIOLOGY, 2012, 10 (01)
  • [42] Multimodality and Flexibility of Stochastic Gene Expression
    Innocentini, Guilherme da Costa Pereira
    Forger, Michael
    Ramos, Alexandre Ferreira
    Radulescu, Ovidiu
    Martinho Hornos, Jose Eduardo
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2013, 75 (12) : 2600 - 2630
  • [43] Multiscale stochastic modelling of gene expression
    Bokes, Pavol
    King, John R.
    Wood, Andrew T. A.
    Loose, Matthew
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (03) : 493 - 520
  • [44] Stochastic gene expression in Arabidopsis thaliana
    Ilka Schultheiß Araújo
    Jessica Magdalena Pietsch
    Emma Mathilde Keizer
    Bettina Greese
    Rachappa Balkunde
    Christian Fleck
    Martin Hülskamp
    [J]. Nature Communications, 8
  • [45] Stochastic gene expression in switching environments
    Gander, Martin J.
    Mazza, Christian
    Rummler, Hansklaus
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2007, 55 (02) : 249 - 269
  • [46] Multiscale stochastic modelling of gene expression
    Pavol Bokes
    John R. King
    Andrew T. A. Wood
    Matthew Loose
    [J]. Journal of Mathematical Biology, 2012, 65 : 493 - 520
  • [47] Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia
    Eduardo Tejera
    João Bernardes
    Irene Rebelo
    [J]. BMC Medical Genomics, 6
  • [48] Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms
    Yuan, Fei
    Lu, Lin
    Zou, Quan
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2020, 1866 (08):
  • [49] Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia
    Tejera, Eduardo
    Bernardes, Joao
    Rebelo, Irene
    [J]. BMC MEDICAL GENOMICS, 2013, 6
  • [50] Stochastic reaction networks with input processes: Analysis and application to gene expression inference
    Cinquemani, Eugenio
    [J]. AUTOMATICA, 2019, 101 : 150 - 156