Multimodality and Flexibility of Stochastic Gene Expression

被引:18
|
作者
Innocentini, Guilherme da Costa Pereira [1 ]
Forger, Michael [1 ]
Ramos, Alexandre Ferreira [2 ]
Radulescu, Ovidiu [3 ]
Martinho Hornos, Jose Eduardo [4 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
[2] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, BR-03828000 Sao Paulo, Brazil
[3] Univ Montpellier 2, IMNP, UMR 5235, F-34095 Montpellier 5, France
[4] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gene expression; Stochasticity; Noise reduction; SINGLE-MOLECULE LEVEL; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; REGULATORY MECHANISMS; NOISE; CELLS; FLUCTUATIONS; NETWORKS; SWITCHES; MODEL;
D O I
10.1007/s11538-013-9909-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a general class of mathematical models for stochastic gene expression where the transcription rate is allowed to depend on a promoter state variable that can take an arbitrary (finite) number of values. We provide the solution of the master equations in the stationary limit, based on a factorization of the stochastic transition matrix that separates timescales and relative interaction strengths, and we express its entries in terms of parameters that have a natural physical and/or biological interpretation. The solution illustrates the capacity of multiple states promoters to generate multimodal distributions of gene products, without the need for feedback. Furthermore, using the example of a three states promoter operating at low, high, and intermediate expression levels, we show that using multiple states operons will typically lead to a significant reduction of noise in the system. The underlying mechanism is that a three-states promoter can change its level of expression from low to high by passing through an intermediate state with a much smaller increase of fluctuations than by means of a direct transition.
引用
收藏
页码:2600 / 2630
页数:31
相关论文
共 50 条
  • [1] Multimodality and Flexibility of Stochastic Gene Expression
    Guilherme da Costa Pereira Innocentini
    Michael Forger
    Alexandre Ferreira Ramos
    Ovidiu Radulescu
    José Eduardo Martinho Hornos
    [J]. Bulletin of Mathematical Biology, 2013, 75 : 2600 - 2630
  • [2] MECHANISMS OF STOCHASTIC GENE EXPRESSION
    Thanos, Dimitri
    [J]. CELLULAR ONCOLOGY, 2009, 31 (02): : 95 - 95
  • [3] Models of stochastic gene expression
    Paulsson, Johan
    [J]. PHYSICS OF LIFE REVIEWS, 2005, 2 (02) : 157 - 175
  • [4] Stochastic regulation of gene expression
    Hasty, J
    Pradines, J
    Dolnik, M
    Collins, JJ
    [J]. STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 191 - 196
  • [5] Stochastic Gene Expression Revisited
    Tomski, Andrzej
    Zakarczemny, Maciej
    [J]. GENES, 2021, 12 (05)
  • [6] Stochastic gene expression with delay
    Jansen, Martin
    Pfaffelhuber, Peter
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2015, 364 : 355 - 363
  • [7] Mechanisms of stochastic gene expression
    Apostolou, E.
    Thanos, D.
    [J]. FEBS JOURNAL, 2008, 275 : 66 - 66
  • [8] Stochastic mechanisms in gene expression
    McAdams, HH
    Arkin, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (03) : 814 - 819
  • [9] Eukaryotic snoRNAs: A paradigm for gene expression flexibility
    Dieci, Giorgio
    Preti, Milena
    Montanini, Barbara
    [J]. GENOMICS, 2009, 94 (02) : 83 - 88
  • [10] Flexibility and Constraint in the Evolution of Gene Expression and Behavior
    Fischer, Eva K.
    [J]. BRAIN BEHAVIOR AND EVOLUTION, 2016, 87 (01) : 1 - 3