Markov chain Monte Carlo method for tracking myocardial borders

被引:1
|
作者
Janiczek, R [1 ]
Ray, N [1 ]
Acton, ST [1 ]
Roy, RJ [1 ]
French, BA [1 ]
Epstein, FH [1 ]
机构
[1] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22903 USA
来源
Computational Imaging III | 2005年 / 5674卷
关键词
GICOV; myocardial; Monte Carlo; Markov chain; cardiac; segmentation;
D O I
10.1117/12.598864
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Cardiac magnetic resonance studies have led to a greater understanding of the pathophysiology of ischemic heart disease. Manual segmentation of myocardial borders, a major task in the data analysis of these studies, is a tedious and time consuming process subject to observer bias. Automated segmentation reduces the time needed to process studies and removes observer bias. We. propose an automated segmentation algorithm that uses an active contour to capture the endo- and epicardial borders (if the left ventricle in a mouse heart. The contour is initialized by computing the ellipse corresponding to the maximal gradient inverse of variation (GICOV) value. The GICOV is the mean divided by the normalized standard deviation of the image intensity gradient in the outward normal direction along the contour. The GICOV is maximal when the contour lies along strong, relatively constant gradients. The contour is then evolved until it maximizes the GICOV value subject to shape constraints. The problem is formulated in a Bayesian framework and is implemented using a Markov Chain Monte Carlo technique.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [41] STEREOGRAPHIC MARKOV CHAIN MONTE CARLO
    Yang, Jun
    Latuszynski, Krzysztof
    Roberts, Gareth o.
    ANNALS OF STATISTICS, 2024, 52 (06): : 2692 - 2713
  • [42] Uncertain Motion Tracking Combined Markov Chain Monte Carlo and Correlation Filters
    Zhang, Huanlong
    Nie, Guohao
    Chen, Jian
    Zhang, Jie
    Yang, Guosheng
    IEEE ACCESS, 2019, 7 : 167076 - 167088
  • [43] Multi-Camera Tracking on a Graph Using Markov Chain Monte Carlo
    Kim, Honggab
    Romberg, Justin
    Wolf, Wayne
    2009 THIRD ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2009, : 449 - 456
  • [44] Markov Chain Monte Carlo Data Association for Multi-Target Tracking
    Oh, Songhwai
    Russell, Stuart
    Sastry, Shankar
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) : 481 - 497
  • [45] VISUAL TRACKING USING HIGH-ORDER MONTE CARLO MARKOV CHAIN
    Pan, Pan
    Schonfeld, Dan
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2636 - 2639
  • [46] ROBUST MULTIPLE OBJECT TRACKING BY DETECTION WITH INTERACTING MARKOV CHAIN MONTE CARLO
    Santhoshkumar, S.
    Karthikeyan, S.
    Manjunath, B. S.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2953 - 2957
  • [47] Tracking multiple moving objects in images using Markov Chain Monte Carlo
    Jiang, Lan
    Singh, Sumeetpal S.
    STATISTICS AND COMPUTING, 2018, 28 (03) : 495 - 510
  • [48] Tracking multiple moving objects in images using Markov Chain Monte Carlo
    Lan Jiang
    Sumeetpal S. Singh
    Statistics and Computing, 2018, 28 : 495 - 510
  • [49] A Markov Chain Monte Carlo based Rigid Image Registration Method
    Karabulut, Navdar
    Erdil, Ertunc
    Cetin, Mujdat
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [50] Cool walking: A new Markov chain Monte Carlo sampling method
    Brown, S
    Head-Gordon, T
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (01) : 68 - 76