A Markov Chain Monte Carlo based Rigid Image Registration Method

被引:0
|
作者
Karabulut, Navdar [1 ]
Erdil, Ertunc [1 ]
Cetin, Mujdat [1 ]
机构
[1] Sabanci Univ, Muhendislik & Doga Bilimleri Fak, Istanbul, Turkey
关键词
Markov chain Monte Carlo; Image registration; Bayesian approach; Multimodal densities;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a Monte Carlo Markov Chain (MCMC) based method for image registration. We formulate the image registration problem within a Bayesian framework and generate samples from the resulting posterior density of the registration parameters using MCMC. Thus, posterior density is characterized through the samples that are drawn with the MCMC principle. When the posterior density is multimodal, samples from different modes of the posterior lead to different and meaningful solutions for the image registration problem. We perform experiments on pairs of test images which may admit multiple registration solutions. Preliminary results demonstrate the potential of the proposed approach.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A method based on the Markov Chain Monte Carlo for fingerprint image segmentation
    Zhan, XS
    Sun, ZX
    Yin, YL
    Chen, Y
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 240 - 248
  • [2] Image Registration via Stochastic Gradient Markov Chain Monte Carlo
    Grzech, Daniel
    Kainz, Bernhard
    Glocker, Ben
    Le Folgoc, Loic
    [J]. UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, UNSURE 2020, GRAIL 2020, 2020, 12443 : 3 - 12
  • [3] LDPC Decoder Based on Markov Chain Monte Carlo Method
    Jin, Jiejun
    Liang, Xiao
    Xu, Yunhao
    Zhang, Zaichen
    You, Xiaohu
    Zhang, Chuan
    [J]. 2018 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2018), 2018, : 219 - 222
  • [4] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    [J]. Sadhana, 2006, 31 : 81 - 104
  • [5] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    [J]. AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [6] On the Markov Chain Monte Carlo (MCMC) method
    Karandikar, RL
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2006, 31 (2): : 81 - 104
  • [7] Markov chain Monte Carlo sampling based terahertz holography image denoising
    Chen, Guanghao
    Li, Qi
    [J]. APPLIED OPTICS, 2015, 54 (14) : 4345 - 4351
  • [8] Stochastic image denoising based on Markov-chain Monte Carlo sampling
    Wong, Alexander
    Mishra, Akshaya
    Zhang, Wen
    Fieguth, Paul
    Clausi, David A.
    [J]. SIGNAL PROCESSING, 2011, 91 (08) : 2112 - 2120
  • [9] Gray-Level Image Segmentation based on Markov Chain Monte Carlo
    Huang, Wenqing
    Zheng, Kebiao
    Zhu, Xiaokai
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL II, 2009, : 279 - 282
  • [10] A flexible particle Markov chain Monte Carlo method
    Eduardo F. Mendes
    Christopher K. Carter
    David Gunawan
    Robert Kohn
    [J]. Statistics and Computing, 2020, 30 : 783 - 798