Semantic labeling of lidar point clouds for UAV applications

被引:5
|
作者
Axelsson, Maria [1 ]
Holmberg, Max [1 ]
Serra, Sabina [1 ]
Ovren, Hannes [1 ]
Tulldahl, Michael [1 ]
机构
[1] Swedish Def Res Agcy FOI, Linkoping, Sweden
关键词
D O I
10.1109/CVPRW53098.2021.00487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Small Unmanned Aerial Vehicle (UAV) platforms equipped with compact laser scanners provides a low-cost option for many applications, including surveillance, mapping, and reconnaissance. For these applications, semantic segmentation or semantic labeling of each point in the lidar point cloud, is important for scene-understanding. In this work, we evaluate methods for semantic segmentation of three-dimensional (3D) point clouds of outdoor scenes measured with a laser scanner mounted on a small UAV. We compare the performance of four different semantic segmentation methods, which are all applied in a scan-byscan fashion, on semi-sparse laser data. The best method achieves 95.3% on the three classes ground, vegetation, and vehicle in terms of mean intersection over union (mIoU) on a previously unseen scene from a different geographical area. The results demonstrate that it is possible to achieve good performance on the semantic segmentation task on data measured using a combination of a small UAV and a compact laser scanner.
引用
下载
收藏
页码:4309 / 4316
页数:8
相关论文
共 50 条
  • [41] A deep learning network for semantic labeling of large-scale urban point clouds
    Yang B.
    Han X.
    Dong Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1059 - 1067
  • [42] Instance Segmentation of LiDAR Point Clouds
    Zhang, Feihu
    Guan, Chenye
    Fang, Jin
    Bai, Song
    Yang, Ruigang
    Torr, Philip H. S.
    Prisacariu, Victor
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9448 - 9455
  • [43] CLASSIFICATION OF MULTISPECTRAL LIDAR POINT CLOUDS
    Ekhtari, Nima
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2756 - 2759
  • [44] Positioning and perception in LIDAR point clouds
    Benedek, Csaba
    Majdik, Andras
    Nagy, Balazs
    Rozsa, Zoltan
    Sziranyi, Tamas
    DIGITAL SIGNAL PROCESSING, 2021, 119
  • [45] Comparing Lidar and Photogrammetric Point Clouds
    Schwind, Michael
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2018, 32 (01): : 25 - 27
  • [46] A Method Coupling NDT and VGICP for Registering UAV-LiDAR and LiDAR-SLAM Point Clouds in Plantation Forest Plots
    Wang, Fan
    Wang, Jiawei
    Wu, Yun
    Xue, Zhijie
    Tan, Xin
    Yang, Yueyuan
    Lin, Simei
    Forests, 2024, 15 (12):
  • [47] Urban GeoBIM Construction by Integrating Semantic LiDAR Point Clouds With as-Designed BIM Models
    Shao, Jie
    Yao, Wei
    Wang, Puzuo
    He, Zhiyi
    Luo, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [48] A Cylindrical Convolution Network for Dense Top-View Semantic Segmentation with LiDAR Point Clouds
    Lu, Jiacheng
    Gu, Shuo
    Xu, Cheng-Zhong
    Kong, Hui
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 344 - 360
  • [49] Adaptive Multiscale Feature Extraction in a Distributed System for Semantic Classification of Airborne LiDAR Point Clouds
    Singh, Satendra
    Sreevalsan-Nair, Jaya
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] SD-SLAM: A semantic SLAM approach for dynamic scenes based on LiDAR point clouds
    Li, Feiya
    Fu, Chunyun
    Sun, Dongye
    Li, Jian
    Wang, Jianwen
    BIG DATA RESEARCH, 2024, 36