Positioning and perception in LIDAR point clouds

被引:17
|
作者
Benedek, Csaba [1 ]
Majdik, Andras [1 ]
Nagy, Balazs [1 ]
Rozsa, Zoltan [1 ]
Sziranyi, Tamas [1 ]
机构
[1] Eotvos Lorand Res Network ELKH, Inst Comp Sci & Control SZTAKI, Machine Percept Res Lab MPLab, Kende U 13-17, H-1111 Budapest, Hungary
关键词
Lidar; Object detection; SLAM; Change detection; Navigation; OBJECT DETECTION; PEOPLE; VEHICLES; FEATURES;
D O I
10.1016/j.dsp.2021.103193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the last decade, Light Detection and Ranging (LIDAR) became a leading technology of detailed and reliable 3D environment perception. This paper gives an overview of the wide applicability of LIDAR sensors from the perspective of signal processing for autonomous driving, including dynamic and static scene analysis, mapping, situation awareness which functions significantly point beyond the role of a safe obstacle detector, which was the sole typical function for LIDARs in the pioneer years of driver-less vehicles. The paper focuses on a wide range of LIDAR data analysis applications of the last decade, and in addition to the presentation of a state-of-the-art survey, the article also summarizes some issues and expected directions of the development in this field, and the future perspectives of LIDAR systems and intelligent LIDAR based information processing. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Positioning errors analysis on airborne LIDAR point clouds
    Li, Feng
    Cui, Ximin
    Liu, Xiaoyang
    Wei, Aixia
    Wu, Yanxiong
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 (06): : 1842 - 1849
  • [2] Adaptive Feature Fusion for Cooperative Perception using LiDAR Point Clouds
    Qiao, Donghao
    Zulkernine, Farhana
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1186 - 1195
  • [3] Recognition of UWB NLOS in LiDAR Point Clouds and Indoor Fusion Positioning Algorithm
    Sui, Xin
    Ma, Haonan
    Wang, Changqiang
    Chen, Zhijian
    Shi, Zhengxu
    Gao, Jiaxin
    Journal of Geo-Information Science, 2024, 26 (12) : 2686 - 2700
  • [4] LabelFormer: Object Trajectory Refinement for Offboard Perception from LiDAR Point Clouds
    Yang, Anqi Joyce
    Casas, Sergio
    Dvornik, Nikita
    Segal, Sean
    Xiong, Yuwen
    Hu, Jordan Sir Kwang
    Fang, Carter
    Urtasun, Raquel
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [5] LiDAR point clouds analysis computer tools for teaching autonomous vehicles perception algorithms
    Jimenez, Felipe
    Clavijo, Miguel
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2024, 32 (03)
  • [6] Instance Segmentation of LiDAR Point Clouds
    Zhang, Feihu
    Guan, Chenye
    Fang, Jin
    Bai, Song
    Yang, Ruigang
    Torr, Philip H. S.
    Prisacariu, Victor
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9448 - 9455
  • [7] CLASSIFICATION OF MULTISPECTRAL LIDAR POINT CLOUDS
    Ekhtari, Nima
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2756 - 2759
  • [8] Comparing Lidar and Photogrammetric Point Clouds
    Schwind, Michael
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2018, 32 (01): : 25 - 27
  • [9] Point Density Variations in Airborne Lidar Point Clouds
    Petras, Vaclav
    Petrasova, Anna
    McCarter, James B.
    Mitasova, Helena
    Meentemeyer, Ross K.
    SENSORS, 2023, 23 (03)
  • [10] LidNet: Boosting Perception and Motion Prediction from a Sequence of LIDAR Point Clouds for Autonomous Driving
    Khalil, Yasser H.
    Mouftah, Hussein T.
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3533 - 3538