MULTIPLICITY OF SOLUTIONS TO A SCALAR-FIELD EQUATION INVOLVING THE SOBOLEV CRITICAL EXPONENT WITH THE ROBIN CONDITION

被引:0
|
作者
Kabeya, Y. [1 ]
机构
[1] Miyazaki Univ, Dept Appl Math, Miyazaki 8892192, Japan
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A scalar-field type equation with the Robin condition is discussed. For some range of the parameter, the multiplicity of solutions is obtained. Moreover, one of the obtained solutions has a blowup property and the blowup point is determined.
引用
收藏
页码:1111 / 1129
页数:19
相关论文
共 50 条
  • [21] On a geometric equation involving the Sobolev trace critical exponent
    Al-Ghamdi, Mohamed Ali
    Chtioui, Hichem
    Sharaf, Khadija
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [22] MULTIPLICITY OF SOLUTIONS TO KIRCHHOFF TYPE EQUATIONS WITH CRITICAL SOBOLEV EXPONENT
    Chen, Peng
    Liu, Xiaochun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 113 - 125
  • [23] Multiplicity of solutions for a noncooperative elliptic system with critical Sobolev exponent
    Lin, Fang
    Li, Yongqing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (03): : 402 - 415
  • [24] Multiplicity of solutions for a class of elliptic systems with critical Sobolev exponent
    Fang, Yanqin
    Zhang, Jihui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 2767 - 2778
  • [25] Existence and multiplicity of solutions for a nonlocal problem with critical Sobolev exponent
    Liao, Jia-Feng
    Li, Hong-Ying
    Zhang, Peng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) : 787 - 797
  • [26] Multiplicity of solutions for a noncooperative elliptic system with critical Sobolev exponent
    Fang Lin
    Yongqing Li
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 402 - 415
  • [27] Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Lun Guo
    Tingxi Hu
    Shuangjie Peng
    Wei Shuai
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [28] Normalized solutions for nonlinear Schrödinger equation involving potential and Sobolev critical exponent
    Jin, Zhen-Feng
    Zhang, Weimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [29] Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Zifei Shen
    Fashun Gao
    Minbo Yang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [30] Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent
    Jichao Wang
    Jian Zhang
    Yujun Cui
    Boundary Value Problems, 2019