Parameter Identification of Robot Manipulators: A Heuristic Particle Swarm Search Approach

被引:8
|
作者
Yan, Danping [1 ,2 ]
Lu, Yongzhong [3 ]
Levy, David [4 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Publ Adm, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Nontradit Secur Ctr, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Hubei, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, Sydney, NSW 2006, Australia
来源
PLOS ONE | 2015年 / 10卷 / 06期
关键词
INERTIAL PARAMETERS; OPTIMIZATION; PSO; ALGORITHMS;
D O I
10.1371/journal.pone.0129157
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter identification of robot manipulators is an indispensable pivotal process of achieving accurate dynamic robot models. Since these kinetic models are highly nonlinear, it is not easy to tackle the matter of identifying their parameters. To solve the difficulty effectively, we herewith present an intelligent approach, namely, a heuristic particle swarm optimization (PSO) algorithm, which we call the elitist learning strategy (ELS) and proportional integral derivative (PID) controller hybridized PSO approach (ELPIDSO). A specified PID controller is designed to improve particles' local and global positions information together with ELS. Parameter identification of robot manipulators is conducted for performance evaluation of our proposed approach. Experimental results clearly indicate the following findings: Compared with standard PSO (SPSO) algorithm, ELPIDSO has improved a lot. It not only enhances the diversity of the swarm, but also features better search effectiveness and efficiency in solving practical optimization problems. Accordingly, ELPIDSO is superior to least squares (LS) method, genetic algorithm (GA), and SPSO algorithm in estimating the parameters of the kinetic models of robot manipulators.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Particle swarm optimization based parameter identification applied to PMSM
    Liu, Li
    Cartes, David A.
    Liu, Wenxin
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 3064 - 3069
  • [42] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [43] Particle Swarm Optimization - Based Identification of a Bouncing Spherical Robot
    Abdullah, Muhammad Amirul
    Ahmad, Salmiah
    Toha, Siti Fauziah
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [44] Hierarchical parallel search with automatic parameter configuration for particle swarm optimization
    Zhao, Fuqing
    Ji, Fei
    Xu, Tianpeng
    Zhu, Ningning
    Jonrinaldi
    APPLIED SOFT COMPUTING, 2024, 151
  • [45] A particle swarm inspired cuckoo search algorithm for real parameter optimization
    Li, Xiangtao
    Yin, Minghao
    SOFT COMPUTING, 2016, 20 (04) : 1389 - 1413
  • [46] Inspiring and modeling multi-robot search with particle swarm optimization
    Pugh, Jim
    Martinoli, Alcherio
    2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 332 - +
  • [47] Particle Swarm Optimization Based Load Model Parameter Identification
    Kim, Young-Gon
    Song, Hwachang
    Kim, Hong Rae
    Lee, Byongjun
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [48] Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization
    Zahara, Erwie
    Liu, An
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 36 - +
  • [49] HYBRID PARTICLE SWARM - TABU SEARCH OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION
    Sebastian, Anish
    Schoen, Marco P.
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [50] A particle swarm inspired cuckoo search algorithm for real parameter optimization
    Xiangtao Li
    Minghao Yin
    Soft Computing, 2016, 20 : 1389 - 1413