Parameter Identification of Robot Manipulators: A Heuristic Particle Swarm Search Approach

被引:8
|
作者
Yan, Danping [1 ,2 ]
Lu, Yongzhong [3 ]
Levy, David [4 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Publ Adm, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Nontradit Secur Ctr, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Hubei, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, Sydney, NSW 2006, Australia
来源
PLOS ONE | 2015年 / 10卷 / 06期
关键词
INERTIAL PARAMETERS; OPTIMIZATION; PSO; ALGORITHMS;
D O I
10.1371/journal.pone.0129157
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter identification of robot manipulators is an indispensable pivotal process of achieving accurate dynamic robot models. Since these kinetic models are highly nonlinear, it is not easy to tackle the matter of identifying their parameters. To solve the difficulty effectively, we herewith present an intelligent approach, namely, a heuristic particle swarm optimization (PSO) algorithm, which we call the elitist learning strategy (ELS) and proportional integral derivative (PID) controller hybridized PSO approach (ELPIDSO). A specified PID controller is designed to improve particles' local and global positions information together with ELS. Parameter identification of robot manipulators is conducted for performance evaluation of our proposed approach. Experimental results clearly indicate the following findings: Compared with standard PSO (SPSO) algorithm, ELPIDSO has improved a lot. It not only enhances the diversity of the swarm, but also features better search effectiveness and efficiency in solving practical optimization problems. Accordingly, ELPIDSO is superior to least squares (LS) method, genetic algorithm (GA), and SPSO algorithm in estimating the parameters of the kinetic models of robot manipulators.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Dynamic Parameter Identification for Robot Manipulators with Nonlinear Friction Model
    Xi W.
    Chen B.
    Ding L.
    Wu H.
    Xie B.
    Chen, Bai (chenbye@126.com), 1600, Chinese Society of Agricultural Machinery (48): : 393 - 399
  • [22] Neural network aided dynamic parameter identification of robot manipulators
    Jiang, Zhao-Hui
    Ishida, Taiki
    Sunawada, Makoto
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3298 - +
  • [23] A finite element formulation for dynamic parameter identification of robot manipulators
    Hardeman, T.
    Aarts, R. G. K. M.
    Jonker, J. B.
    MULTIBODY SYSTEM DYNAMICS, 2006, 16 (01) : 21 - 35
  • [24] A finite element formulation for dynamic parameter identification of robot manipulators
    T. Hardeman
    R. G. K. M. Aarts
    J. B. Jonker
    Multibody System Dynamics, 2006, 16 : 21 - 35
  • [25] Dynamic parameter identification of upper-limb rehabilitation robot system based on variable parameter particle swarm optimisation
    Wang, Jin Lei
    Li, Yafeng
    An, Aimin
    IET CYBER-SYSTEMS AND ROBOTICS, 2020, 2 (03) : 140 - 148
  • [26] A PARAMETER IDENTIFICATION APPROACH OF A PEM FUEL CELL STACK USING PARTICLE SWARM OPTIMIZATION
    Salim, Reem I.
    Noura, Hassan
    Fardoun, Abbas
    PROCEEDINGS OF THE ASME 11TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2013, 2014,
  • [27] Application of particle swarm optimization to parameter search in dynamical systems
    Matsushita, Haruna
    Saito, Toshimichi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2011, 2 (04): : 458 - 471
  • [28] Quadrotor Identification through the Cooperative Particle Swarm Optimization-Cuckoo Search Approach
    El Gmili, Nada
    Mjahed, Mostafa
    El Kari, Abdeljalil
    Ayad, Hassan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [29] A new approach to the dynamic parameter identification of robotic manipulators
    Qin, Zhongkai
    Baron, Luc
    Birglen, Lionel
    ROBOTICA, 2010, 28 : 539 - 547
  • [30] Parameter Identification of Wiener Model with Discontinuous Nonlinearities Using Hybrid Simplex Search and Particle Swarm Optimization
    Tang, Yinggan
    Qiao, Leijie
    Guan, Xinping
    NEUROQUANTOLOGY, 2008, 6 (04) : 387 - 396