Parameter Identification of Robot Manipulators: A Heuristic Particle Swarm Search Approach

被引:8
|
作者
Yan, Danping [1 ,2 ]
Lu, Yongzhong [3 ]
Levy, David [4 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Publ Adm, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Nontradit Secur Ctr, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Hubei, Peoples R China
[4] Univ Sydney, Fac Engn & Informat Technol, Sydney, NSW 2006, Australia
来源
PLOS ONE | 2015年 / 10卷 / 06期
关键词
INERTIAL PARAMETERS; OPTIMIZATION; PSO; ALGORITHMS;
D O I
10.1371/journal.pone.0129157
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter identification of robot manipulators is an indispensable pivotal process of achieving accurate dynamic robot models. Since these kinetic models are highly nonlinear, it is not easy to tackle the matter of identifying their parameters. To solve the difficulty effectively, we herewith present an intelligent approach, namely, a heuristic particle swarm optimization (PSO) algorithm, which we call the elitist learning strategy (ELS) and proportional integral derivative (PID) controller hybridized PSO approach (ELPIDSO). A specified PID controller is designed to improve particles' local and global positions information together with ELS. Parameter identification of robot manipulators is conducted for performance evaluation of our proposed approach. Experimental results clearly indicate the following findings: Compared with standard PSO (SPSO) algorithm, ELPIDSO has improved a lot. It not only enhances the diversity of the swarm, but also features better search effectiveness and efficiency in solving practical optimization problems. Accordingly, ELPIDSO is superior to least squares (LS) method, genetic algorithm (GA), and SPSO algorithm in estimating the parameters of the kinetic models of robot manipulators.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On parameter identification of robot manipulators
    Reyes, F
    Kelly, R
    1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 1910 - 1915
  • [2] Backward sequential approach for dynamic parameter identification of robot manipulators
    Jung, Dawoon
    Cheong, Joono
    Park, Dong Il
    Park, Chanhun
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2018, 15 (01):
  • [3] Parameter Identification of a Robot Arm by Particle Swarm Optimization and Haar Wavelet
    Pinitnanthakorn, Apisit
    Chen, Shyh-Leh
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 1201 - 1206
  • [4] Kinematic Parameter Identification for a Parallel Robot with an Improved Particle Swarm Optimization Algorithm
    Yu, Dayong
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [5] Parameter Identification of SCARA Robot Based on Random Weight Particle Swarm Optimization
    Wang B.
    Qi Z.
    Yan R.
    Liu H.
    1600, Xi'an Jiaotong University (55): : 20 - 27
  • [6] Particle swarm optimization with dynamic local search for frequency modulation parameter identification
    Department of Fire Engineering, The Chinese People's Armed Police Force Academy, Langfang 065000, China
    不详
    Chen, L. (chenhb_2011@yahoo.cn), 2012, Advanced Institute of Convergence Information Technology (04)
  • [7] A Research on Particle Swarm Optimization and its application in robot manipulators
    Huang Gang
    Li Dehua
    Yang Jie
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 1343 - 1347
  • [8] A Particle Swarm Optimization Approach for Parameter Identification of Lorenz Chaotic System
    Modarres, Hamidreza
    Alfi, Alireza
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 3127 - +
  • [9] Parameter identification of nonlinear systems using a particle swarm optimization approach
    Chang, Wei-Der
    Cheng, Jun-Ping
    Hsu, Ming-Chieh
    Tsai, Liang-Chan
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 113 - 117
  • [10] Parameter identification of robot manipulators with unknown payloads using an improved chaotic sparrow search algorithm
    Xingjia Li
    Jinan Gu
    Xiaohong Sun
    Jing Li
    Shixi Tang
    Applied Intelligence, 2022, 52 : 10341 - 10351