Irradiation studies on carbon nanotube-reinforced boron carbide

被引:3
|
作者
Aitkaliyeva, Assel [1 ]
McCarthy, Michael C. [2 ]
Jeong, Hae-Kwon [2 ]
Shao, Lin [1 ,3 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Ion irradiation; Carbon nanotubes; Ceramics; Boron carbide; RAMAN-SPECTRA; GRAPHITE;
D O I
10.1016/j.nimb.2011.01.076
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Radiation response of carbon nanotube (CNT) reinforced boron carbide composite has been studied for its application as a structural component in nuclear engineering. The composite was bombarded by 140 key He ions at room temperature to a fluence ranging from 1 x 10(14) to 1 x 10(17)cm(-2). Two-dimensional Raman mapping shows inhomogeneous distribution of CNTs, and was used to select regions of interest for damage characterization. For CNTs, the intensities ratio of D-G bands (I-D/I-G) increased with fluence up to a certain value, and decreased at the fluence of 5 x 10(16) cm(-2). This fluence also corresponds to a trend break in the plot of FWHM (full width at half maximum) of G band vs. I-D/I-G ratio, which indicates amorphization of CNTs. The study shows that Raman spectroscopy is a powerful tool to quantitatively characterize radiation damage in CNT-reinforced composites. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 50 条
  • [31] Vibration analysis of carbon nanotube-reinforced composite microbeams
    Civalek, Omer
    Dastjerdi, Shahriar
    Akbas, Seref D.
    Akgoz, Bekir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [32] High-Performance Carbon Nanotube-Reinforced Bioplastic
    Ramontja, James
    Ray, Suprakas Sinha
    Pillai, Sreejarani K.
    Luyt, Adriaan S.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2009, 294 (12) : 839 - 846
  • [33] Multiscale analysis of carbon nanotube-reinforced nanofiber scaffolds
    Unnikrishnan, V. U.
    Unnikrishnan, G. U.
    Reddy, J. N.
    COMPOSITE STRUCTURES, 2011, 93 (02) : 1008 - 1014
  • [34] Mathematical modelling of the stability of carbon nanotube-reinforced panels
    Aragh, B. Sobhani
    STEEL AND COMPOSITE STRUCTURES, 2017, 24 (06): : 727 - 740
  • [35] Synthesis of carbon nanotube-reinforced Al matrix composites
    Ahn, Jung-Ho
    Wang, Yanli
    Kim, Yong-Jin
    Kim, Sung-Jin
    Chung, Hyungsik
    THERMEC 2006, PTS 1-5, 2007, 539-543 : 860 - +
  • [36] Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites
    Li, Y.
    Liu, S.
    Hu, N.
    Han, X.
    Zhou, L.
    Ning, H.
    Wu, L.
    Alamusi
    Yamamoto, G.
    Chang, C.
    Hashida, T.
    Atobe, S.
    Fukunaga, H.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [37] Toughening Mechanisms in Carbon Nanotube-Reinforced Amorphous Carbon Matrix Composites
    Niu, J. B.
    Li, L. L.
    Xu, Q.
    Xia, Z. H.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2013, 38 (01): : 31 - 41
  • [38] The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites
    Shi, DL
    Feng, XQ
    Huang, YGY
    Hwang, KC
    Gao, HJ
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 250 - 257
  • [39] Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites
    Kim, Jun Young
    MATERIALS, 2009, 2 (04) : 1955 - 1974
  • [40] Characterization of catastrophic bifurcations in an agglomerated carbon nanotube-reinforced beam
    Xiaoyue Li
    Hadi Arvin
    Acta Mechanica, 2024, 235 : 3181 - 3209