bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

被引:0
|
作者
Helske, Jouni [1 ]
Vihola, Matti [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
来源
R JOURNAL | 2021年 / 13卷 / 02期
基金
芬兰科学院;
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an R package bssm for Bayesian non-linear/non-Gaussian state space modeling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package also accommodates discretely observed latent diffusion processes. The inference is based on fully automatic, sampling post-correction to eliminate any approximation bias. The package also implements a direct pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate approximations. The package offers an easy-to-use interface to define models with linear-Gaussian state dynamics with non-Gaussian observation models and has an Rcpp interface for specifying custom non-linear and diffusion models.
引用
收藏
页码:578 / 589
页数:12
相关论文
共 50 条
  • [1] Efficient estimation for non-linear and non-Gaussian state space models
    Huang, DW
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 5036 - 5041
  • [2] Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models
    Ng, Jason
    Forbes, Catherine S.
    Martin, Gael M.
    McCabe, Brendan P. M.
    INTERNATIONAL JOURNAL OF FORECASTING, 2013, 29 (03) : 411 - 430
  • [3] PARRALELIZATION OF NON-LINEAR & NON-GAUSSIAN BAYESIAN STATE ESTIMATORS (PARTICLE FILTERS)
    Jarrah, Amin
    Jamali, Mohsin M.
    Hosseini, S. S. S.
    Astola, Jaakko
    Gabbouj, Moncef
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2506 - 2510
  • [4] A simulation based algorithm for optimal quantization in non-linear/non-Gaussian state-space models
    Tadic, VB
    Doucet, A
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5408 - 5413
  • [5] A Class of Non-Gaussian State Space Models With Exact Likelihood Inference
    Creal, Drew D.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (04) : 585 - 597
  • [6] On Gaussian Optimal Smoothing of Non-Linear State Space Models
    Sarkka, Simo
    Hartikainen, Jouni
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) : 1938 - 1941
  • [7] A non-linear and non-Gaussian state-space model for censored air pollution data
    Johns, CJ
    Shumway, RH
    ENVIRONMETRICS, 2005, 16 (02) : 167 - 180
  • [8] Fast smoothing in switching approximations of non-linear and non-Gaussian models
    Gorynin, Ivan
    Derrode, Stephane
    Monfrini, Emmanuel
    Pieczynski, Wojciech
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 : 38 - 46
  • [9] Recursive nonlinear estimation of non-linear/non-Gaussian dynamic models
    Kulhavy, R
    COMPUTER-INTENSIVE METHODS IN CONTROL AND SIGNAL PROCESSING: THE CURSE OF DIMENSIONALITY, 1997, : 141 - 167
  • [10] Bayesian inference in non-Gaussian factor analysis
    Cinzia Viroli
    Statistics and Computing, 2009, 19