On Gaussian Optimal Smoothing of Non-Linear State Space Models

被引:73
|
作者
Sarkka, Simo [1 ]
Hartikainen, Jouni [1 ]
机构
[1] Aalto Univ, FI-00076 Aalto, Finland
关键词
Bayesian smoothing; Gaussian assumed density smoothing; non-linear optimal smoothing; non-linear Rauch-Tung-Striebel smoothing; FILTERS; ALGORITHMS;
D O I
10.1109/TAC.2010.2050017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note we shall present a new Gaussian approximation based framework for approximate optimal smoothing of non-linear stochastic state space models. The approximation framework can be used for efficiently solving non-linear fixed-interval, fixed-point and fixed-lag optimal smoothing problems. We shall also numerically compare accuracies of approximations, which are based on Taylor series expansion, unscented transformation, central differences and Gauss-Hermite quadrature.
引用
收藏
页码:1938 / 1941
页数:4
相关论文
共 50 条
  • [1] Efficient estimation for non-linear and non-Gaussian state space models
    Huang, DW
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 5036 - 5041
  • [2] A simulation based algorithm for optimal quantization in non-linear/non-Gaussian state-space models
    Tadic, VB
    Doucet, A
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 5408 - 5413
  • [3] Fast smoothing in switching approximations of non-linear and non-Gaussian models
    Gorynin, Ivan
    Derrode, Stephane
    Monfrini, Emmanuel
    Pieczynski, Wojciech
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 : 38 - 46
  • [4] bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R
    Helske, Jouni
    Vihola, Matti
    [J]. R JOURNAL, 2021, 13 (02): : 578 - 589
  • [5] Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models
    Ng, Jason
    Forbes, Catherine S.
    Martin, Gael M.
    McCabe, Brendan P. M.
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2013, 29 (03) : 411 - 430
  • [6] Non-Linear Gaussian Smoothing With Taylor Moment Expansion
    Zhao, Zheng
    Sarkka, Simo
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 80 - 84
  • [7] OPTIMAL NON-LINEAR MODELS
    Aldroubi, Akram
    Cabrelli, Carlos
    Molter, Ursula
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 217 - 225
  • [8] Robust Non-linear Smoother for State-space Models
    Agamennoni, Gabriel
    Nebot, Eduardo M.
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1044 - 1050
  • [9] Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
    LI Chaokui ZHU Qing SONG ChengfangLI Chaokui
    [J]. Geo-spatial Information Science, 2003, (02) : 25 - 30
  • [10] On Gaussian Optimal Smoothing of Nonlinear State Space Models (vol 55, pg 1938, 2010)
    Saerkkae, Simo
    Hartikainen, Jouni
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (07) : 1746 - 1746